Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Deterministic patterns in cell motility

Abstract

Cell migration paths are generally described as random walks, associated with both intrinsic and extrinsic noise. However, complex cell locomotion is not merely related to such fluctuations, but is often determined by the underlying machinery. Cell motility is driven mechanically by actin and myosin, two molecular components that generate contractile forces. Other cell functions make use of the same components and, therefore, will compete with the migratory apparatus. Here, we propose a physical model of such a competitive system, namely dendritic cells whose antigen capture function and migratory ability are coupled by myosin II. The model predicts that this coupling gives rise to a dynamic instability, whereby cells switch from persistent migration to unidirectional self-oscillation, through a Hopf bifurcation. Cells can then switch to periodic polarity reversals through a homoclinic bifurcation. These predicted dynamic regimes are characterized by robust features that we identify through in vitro trajectories of dendritic cells over long timescales and distances. We expect that competition for limited resources in other migrating cell types can lead to similar deterministic migration modes.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: System illustration (cell reference frame).
Figure 2: Switch from continuous migration to motility pulses.
Figure 3: Approach to a stable limit cycle.
Figure 4: Switch from unidirectional to bidirectional oscillations through a homoclinic bifurcation.
Figure 5: Approach to a bidirectional limit cycle.

Similar content being viewed by others

References

  1. Selmeczi, D. et al. Cell motility as random motion: a review. Eur. Phys. J. Spec. Top. 157, 1–15 (2008).

    Article  Google Scholar 

  2. Harris, T. H. et al. Generalized lévy walks and the role of chemokines in migration of effector cd8+ t cells. Nature 486, 545–548 (2012).

    Article  ADS  Google Scholar 

  3. Bénichou, O., Loverdo, C., Moreau, M. & Voituriez, R. Intermittent search strategies. Rev. Mod. Phys. 83, 81–129 (2011).

    Article  ADS  Google Scholar 

  4. Blanch-Mercader, C. & Casademunt, J. Spontaneous motility of actin lamellar fragments. Phys. Rev. Lett. 110, 078102 (2013).

    Article  ADS  Google Scholar 

  5. Mitchison, T. & Cramer, L. Actin-based cell motility and cell locomotion. Cell 84, 371–379 (1996).

    Article  Google Scholar 

  6. Verkhovsky, A. B., Svitkina, T. M. & Borisy, G. G. Self-polarization and directional motility of cytoplasm. Curr. Biol. 9, 11–20 (1999).

    Article  Google Scholar 

  7. Nelson, W. J. Adaptation of core mechanisms to generate cell polarity. Nature 422, 766–774 (2003).

    Article  ADS  Google Scholar 

  8. Kruse, K., Joanny, J., Jülicher, F. & Prost, J. Contractility and retrograde flow in lamellipodium motion. Phys. Biol. 3, 130–137 (2006).

    Article  ADS  Google Scholar 

  9. Yam, P. T. et al. Actin-myosin network reorganization breaks symmetry at the cell rear to spontaneously initiate polarized cell motility. J. Cell Biol. 178, 1207–1221 (2007).

    Article  Google Scholar 

  10. Kozlov, M. M. & Mogilner, A. Model of polarization and bistability of cell fragments. Biophys. J. 93, 3811–3819 (2007).

    Article  ADS  Google Scholar 

  11. Bendix, P. M. et al. A quantitative analysis of contractility in active cytoskeletal protein networks. Biophys. J. 94, 3126–3136 (2008).

    Article  ADS  Google Scholar 

  12. Rubinstein, B., Fournier, M. F., Jacobson, K., Verkhovsky, A. B. & Mogilner, A. Actin-myosin viscoelastic flow in the keratocyte lamellipod. Biophys. J. 97, 1853–1863 (2009).

    Article  ADS  Google Scholar 

  13. Wilson, C. A. et al. Myosin II contributes to cell-scale actin network treadmilling through network disassembly. Nature 465, 373–377 (2010).

    Article  ADS  Google Scholar 

  14. Fournier, M. F., Sauser, R., Ambrosi, D., Meister, J.-J. & Verkhovsky, A. B. Force transmission in migrating cells. J. Cell Biol. 188, 287–297 (2010).

    Article  Google Scholar 

  15. Wolgemuth, C. W., Stajic, J. & Mogilner, A. Redundant mechanisms for stable cell locomotion revealed by minimal models. Biophys. J. 101, 545–553 (2011).

    Article  ADS  Google Scholar 

  16. Hawkins, R. J. et al. Spontaneous contractility-mediated cortical flow generates cell migration in three-dimensional environments. Biophys. J. 101, 1041–1045 (2011).

    Article  ADS  Google Scholar 

  17. Asnacios, A. & Hamant, O. The mechanics behind cell polarity. Trends Cell Biol. 22, 584–591 (2012).

    Article  Google Scholar 

  18. Callan-Jones, A. & Voituriez, R. Active gel model of amoeboid cell motility. New J. Phys. 15, 025022 (2013).

    Article  ADS  Google Scholar 

  19. Danuser, G., Allard, J. & Mogilner, A. Mathematical modeling of eukaryotic cell migration: insights beyond experiments. Annu. Rev. Cell Dev. Biol. 29, 501–528 (2013).

    Article  Google Scholar 

  20. Recho, P., Putelat, T. & Truskinovsky, L. Contraction-driven cell motility. Phys. Rev. Lett. 111, 108102 (2013).

    Article  ADS  Google Scholar 

  21. Liu, Y.-J. et al. Confinement and low adhesion induce fast amoeboid migration of slow mesenchymal cells. Cell 160, 659–672 (2015).

    Article  Google Scholar 

  22. Maiuri, P. et al. Actin flows mediate a universal coupling between cell speed and cell persistence. Cell 161, 374–386 (2015).

    Article  Google Scholar 

  23. Chabaud, M. et al. Cell migration and antigen capture are antagonistic processes coupled by myosin II in dendritic cells. Nature Commun. 6, 7526 (2015).

    Article  ADS  Google Scholar 

  24. Vargas, P. et al. Innate control of actin nucleation determines two distinct migration behaviours in dendritic cells. Nature Cell Biol. 18, 43–53 (2016).

    Article  Google Scholar 

  25. Austyn, J. Lymphoid dendritic cells. Immunology 62, 161–170 (1987).

    Google Scholar 

  26. Banchereau, J. & Steinman, R. M. Dendritic cells and the control of immunity. Nature 392, 245–252 (1998).

    Article  ADS  Google Scholar 

  27. Banchereau, J. et al. Immunobiology of dendritic cells. Annu. Rev. Immunol. 18, 767–811 (2000).

    Article  Google Scholar 

  28. Heuzé, M. L. et al. Migration of dendritic cells: physical principles, molecular mechanisms, and functional implications. Immunol. Rev. 256, 240–254 (2013).

    Article  Google Scholar 

  29. Steinman, R. M. & Swanson, J. The endocytic activity of dendritic cells. J. Exp. Med. 182, 283–288 (1995).

    Article  Google Scholar 

  30. Swanson, J. A. & Watts, C. Macropinocytosis. Trends Cell Biol. 5, 424–428 (1995).

    Article  Google Scholar 

  31. Sallusto, F., Cella, M., Danieli, C. & Lanzavecchia, A. Dendritic cells use macropinocytosis and the mannose receptor to concentrate macromolecules in the major histocompatibility complex class II compartment: downregulation by cytokines and bacterial products. J. Exp. Med. 182, 389–400 (1995).

    Article  Google Scholar 

  32. Bergert, M. et al. Force transmission during adhesion-independent migration. Nature Cell Biol. 17, 524–529 (2015).

    Article  Google Scholar 

  33. Guckenheimer, J. & Holmes, P. Nonlinear Oscillations, Dynamical Systems, and Bifurcations of Vector Fields Vol. 42 (Springer Science and Business Media, 1983).

    Book  Google Scholar 

  34. Solanes, P. et al. Space exploration by dendritic cells requires maintenance of myosin II activity by ip3 receptor 1. EMBO J. 34, 798–810 (2015).

    Article  Google Scholar 

  35. Zhang, J., Guo, W.-H. & Wang, Y.-L. Microtubules stabilize cell polarity by localizing rear signals. Proc. Natl Acad. Sci. USA 111, 16383–16388 (2014).

    Article  ADS  Google Scholar 

  36. Szabo, B. et al. Auto-reverse nuclear migration in bipolar mammalian cells on micropatterned surfaces. Cell Motil. Cytoskeleton 59, 38–49 (2004).

    Article  Google Scholar 

  37. Fraley, S. I., Feng, Y., Giri, A., Longmore, G. D. & Wirtz, D. Dimensional and temporal controls of three-dimensional cell migration by zyxin and binding partners. Nature Commun. 3, 719 (2012).

    Article  ADS  Google Scholar 

  38. Camley, B. A., Zhao, Y., Li, B., Levine, H. & Rappel, W.-J. Periodic migration in a physical model of cells on micropatterns. Phys. Rev. Lett. 111, 158102 (2013).

    Article  ADS  Google Scholar 

  39. Veltman, D. M. Drink or drive: competition between macropinocytosis and cell migration. Biochem. Soc. Trans. 43, 129–132 (2015).

    Article  Google Scholar 

  40. Prentice-Mott, H. V. et al. Directional memory arises from long-lived cytoskeletal asymmetries in polarized chemotactic cells. Proc. Natl Acad. Sci. USA 113, 1267–1272 (2016).

    Article  ADS  Google Scholar 

Download references

Acknowledgements

The authors thank M. Chabaud and M. Heuzé who performed the experimental study23 and have kindly contributed the data; R. Attia, M. Bretou, P. Vargas and P. Maiuri for discussions; and A. Monge and E. Bellin for language editing. N.S.G. would like to thank the ISF grant 580/12 for support. This work is made possible through the historic generosity of the Perlman family.

Author information

Authors and Affiliations

Authors

Contributions

I.L. created the analytic model with input by all authors, designed and implemented the analysis of both the model and the experiments, and prepared the manuscript; M.P. and A.-M.L.-D. conceived and supervised the experiments and contributed the data; N.S.G. jointly conceived the theoretical study with R.V., supervised the work and edited the manuscript. All authors reviewed the manuscript.

Corresponding author

Correspondence to Ido Lavi.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary information

Supplementary information (PDF 14394 kb)

Supplementary Movie 1

Supplementary Movie (MP4 270 kb)

Supplementary Movie 2

Supplementary Movie (MP4 51 kb)

Supplementary Movie 3

Supplementary Movie (MP4 101 kb)

Supplementary Movie 4

Originally mislabelled as Movie 3 (MP4 65 kb)

Supplementary Movie 5

Originally mislabelled as Movie 4 (MP4 112 kb)

Supplementary Movie 6

Originally mislabelled as Movie 5 (MP4 141 kb)

Supplementary Movie 7

Originally mislabelled as Movie 6 (MP4 162 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lavi, I., Piel, M., Lennon-Duménil, AM. et al. Deterministic patterns in cell motility. Nature Phys 12, 1146–1152 (2016). https://doi.org/10.1038/nphys3836

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nphys3836

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing