Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Differential stress induced by thiol adsorption on facetted nanocrystals

Abstract

Polycrystalline gold films coated with thiol-based self-assembled monolayers (SAM) form the basis of a wide range of nanomechanical sensor platforms1. The detection of adsorbates with such devices relies on the transmission of mechanical forces, which is mediated by chemically derived stress at the organic–inorganic interface. Here, we show that the structure of a single 300-nm-diameter facetted gold nanocrystal, measured with coherent X-ray diffraction, changes profoundly after the adsorption of one of the simplest SAM-forming organic molecules. On self-assembly of propane thiol, the crystal’s flat facets contract radially inwards relative to its spherical regions. Finite-element modelling indicates that this geometry change requires large stresses that are comparable to those observed in cantilever measurements. The large magnitude and slow kinetics of the contraction can be explained by an intermixed gold–sulphur layer that has recently been identified crystallographically2. Our results illustrate the importance of crystal edges and grain boundaries in interface chemistry and have broad implications for the application of thiol-based SAMs, ranging from nanomechanical sensors to coating technologies.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: CXD data.
Figure 2: Difference Fourier analysis showing the location of the crystal distortions due to thiol binding.
Figure 3: Measured strain and FEA simulation of the effect of surface stress.

Similar content being viewed by others

References

  1. Ndieyira, J. W. et al. Nanomechanical detection of antibiotic mucopeptide binding in a model for superbug drug resistance. Nature Nanotech. 3, 691–696 (2008).

    Article  CAS  Google Scholar 

  2. Jadzinsky, P. D., Calero, G., Ackerson, C. J., Bushnell, D. A. & Kornberg, R. D. Structure of a thiol monolayer-protected gold nanoparticle at 1.1 angstrom resolution. Science 318, 430–433 (2007).

    Article  CAS  Google Scholar 

  3. Boisen, A., Dohn, S., Keller, S. S., Schmid, S. & Tenje, M. Cantilever-like micromechanical sensors. Rep. Prog. Phys. 74, 036101 (2011).

    Article  Google Scholar 

  4. Nuzzo, R. G. & Allara, D. L. Adsorption of bifunctional organic disulfides on gold surfaces. J. Am. Chem. Soc. 105, 4481–4483 (1983).

    Article  CAS  Google Scholar 

  5. Bain, C. D. et al. Formation of monolayer films by the spontaneous assembly of organic thiols from solution onto gold. J. Am. Chem. Soc. 111, 321–335 (1989).

    Article  CAS  Google Scholar 

  6. Love, J. C., Estroff, L. A., Kriebel, J. K., Nuzzo, R. G. & Whitesides, G. M. Self-assembled monolayers of thiolates on metals as a form of nanotechnology. Chem. Rev. 105, 1103–1169 (2005).

    Article  CAS  Google Scholar 

  7. Fritz, J. et al. Translating biomolecular recognition into nanomechanics. Science 288, 316–318 (2000).

    Article  CAS  Google Scholar 

  8. McKendry, R. A. et al. Multiple label-free biodetection and quantitative DNA binding assays on a nanomechanical cantilever array. Proc. Natl Acad Sci. USA 99, 9783–9788 (2002).

    Article  CAS  Google Scholar 

  9. Kim, M. et al. Creating favorable geometries for directing organic photoreactions in alkanethiolate monolayers. Science 331, 1312–1315 (2011).

    Article  CAS  Google Scholar 

  10. Maksymovych, P., Voznyy, O., Dougherty, D. B., Sorescu, D. C. & Yates, J. T. Gold adatom as a key structural component in self-assembled monolayers of organosulfur molecules on Au(111). Prog. Surf. Sci. 85, 206–240 (2010).

    Article  CAS  Google Scholar 

  11. Ayyad, A. H., Stettner, J. & Magnussen, O. M. Electrocompression of the Au(111) surface layer during Au electrodeposition. Phys. Rev. Lett. 94, 066106 (2005).

    Article  CAS  Google Scholar 

  12. Miao Yu, N. et al. True nature of an archetypal self-assembly system: Mobile Au-thiolate species on Au(111). Phys. Rev. Lett 97, 166102 (2006).

    Article  Google Scholar 

  13. Jiang, D., Tiago, M. L., Luo, W. & Dai, S. The staple motif: A key to stability of thiolate-protected gold nanoclusters. J. Am. Chem. Soc. 130, 2777–2779 (2008).

    Article  CAS  Google Scholar 

  14. Pfeifer, M. A., Williams, G. J., Vartanyants, I. A., Harder, R. & Robinson, I. K. Three-dimensional mapping of a deformation field inside a nanocrystal. Nature 442, 63–66 (2006).

    Article  CAS  Google Scholar 

  15. Robinson, I. K. & Harder, R. Coherent diffraction imaging of strains on the nanoscale. Nature Mater. 8, 291–298 (2009).

    Article  CAS  Google Scholar 

  16. Newton, M. C., Leake, S. J., Harder, R. & Robinson, I. K. Three-dimensional imaging of strain in a single ZnO nanorod. Nature Mater. 9, 120–124 (2010).

    Article  CAS  Google Scholar 

  17. Wortis, M. in Chemistry and Physics of Solid Surfaces VII (eds Vanselow, R. & Howe, R.) 367–405 (Springer Series in Surface Science, Vol. 10, 1988).

    Book  Google Scholar 

  18. Miao, J., Sayre, D. & Chapman, H. N. Phase retrieval from the magnitude of the Fourier transforms of nonperiodic objects. J. Opt. Soc. Am. 15, 1662 (1998).

    Article  Google Scholar 

  19. Henderson, R. & Moffat, J. K. The difference Fourier technique in protein crystallography: Errors and their treatment. Acta Cryst. B27, 1414–1420 (1971).

    Article  Google Scholar 

  20. Harder, R., Pfeifer, M. A., Williams, G. J., Vartaniants, I. A. & Robinson, I. K. Orientation variation of surface strain. Phys. Rev. B 76, 115425 (2007).

    Article  Google Scholar 

  21. Sushko, M. L., Harding, J. H., Shluger, A. L., McKendry, R. A. & Watari, M. Physics of nanomechanical biosensing on cantilever arrays. Adv. Mater. 20, 3848–3853 (2008).

    Article  CAS  Google Scholar 

  22. Watari, M. et al. Investigating the molecular mechanisms of in-plane mechanochemistry on cantilever arrays. J. Am. Chem. Soc. 129, 601–609 (2007).

    Article  CAS  Google Scholar 

  23. Berger, R. et al. Surface stress in the self-assembly of alkanethiols on gold. Science 276, 2021–2024 (1997).

    Article  CAS  Google Scholar 

  24. Godin, M. et al. Surface stress, kinetics, and structure of alkanethiol self-assembled monolayers. Langmuir 20, 7090–7096 (2004).

    Article  CAS  Google Scholar 

  25. Godin, M. et al. Cantilever-based sensing: The origin of surface stress and optimization strategies. Nanotechnology 21, 075501 (2010).

    Article  Google Scholar 

  26. Haiss, W. Surface stress of clean and adsorbate-covered solids. Rep. Prog. Phys. 64, 591–648 (2001).

    Article  CAS  Google Scholar 

  27. Ibach, H. The role of surface stress in reconstruction, epitaxial growth and stabilization of mesoscopic structures. Surf. Sci. Rep. 29, 195–263 (1997).

    Article  Google Scholar 

  28. Rastelli, A., Stoffel, M., Tersoff, J., Kar, G. S. & Schmidt, O. G. Kinetic evolution and equilibrium morphology of strained islands. Phys. Rev. Lett. 95, 026103 (2005).

    Article  CAS  Google Scholar 

  29. Vereecken, P. M., Binstead, R. A., Deligianni, H. & Andricacos, P. C. The chemistry of additives in damascene copper plating. IBM J. Res. Dev. 49, 3–18 (2005).

    Article  CAS  Google Scholar 

  30. Fienup, J. R. Phase retrieval algorithms: A comparison. Appl. Opt. 21, 2758–2769 (1982).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Work supported by the ‘nanosculpture’ Advanced Grant from the European Research Council, a Science and Innovation Award for Nanometrology and a Nanotechnology ‘Grand Challenge in Healthcare’ award from the UK Engineering and Physical Sciences Research Council. Measurements were carried out at APS, which is operated by the US Department of Energy.

Author information

Authors and Affiliations

Authors

Contributions

Project was conceived by M.W., R.A.M., G.A., Y-A.S. and I.K.R. M.W., R.H. and I.K.R. carried out the X-ray measurements, M.W. and M.V. the cantilever measurements, X.S. and G.X. the FEA analysis and M.W., X.H., R.H. and I.K.R. the DFM analysis. All authors contributed to interpreting the results and writing the manuscript.

Corresponding author

Correspondence to Ian K. Robinson.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Information (PDF 1129 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Watari, M., McKendry, R., Vögtli, M. et al. Differential stress induced by thiol adsorption on facetted nanocrystals. Nature Mater 10, 862–866 (2011). https://doi.org/10.1038/nmat3124

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nmat3124

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing