Skip to main content
Log in

The Cohesive-Adhesive Balances in Dry Powder Inhaler Formulations I: Direct Quantification by Atomic Force Microscopy

  • Published:
Pharmaceutical Research Aims and scope Submit manuscript

Abstract

Purpose. To obtain a quantitative assessment of the cohesive and adhesive force balance within dry powder inhaler formulations.

Methods. The atomic force microscope (AFM) colloid probe technique was used to measure the adhesive and cohesive force characteristics of dry powder systems containing an active component (budesonide, salbutamol sulphate) and α-lactose monohydrate. To minimize the variations in contact area between colloid probe and substrates, nanometer smooth crystal surfaces of the drugs and the excipient were prepared.

Results. The uniformity in contact area allowed accurate and reproducible force measurements. Cohesive-adhesive balance (CAB) graphs were developed to allow direct comparison of the interaction forces occurring in model carrier-based formulations. A salbutamol sulphate-lactose system revealed a significant tendency for the two materials to adhere, suggesting a propensity for the powder to form a homogenous blend. In contrast, the budesonide-lactose system exhibited strong cohesive properties suggesting that the formulation may exhibit poor blend homogeneity and potential for segregation upon processing and handling.

Conclusions. The novel approach provides a fundamental insight into the cohesive-adhesive balances in dry powder formulations and further understanding of powder behavior.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

REFERENCES

  1. W. C. Hinds. Aerosol technology: Properties, Behaviour and Measurements of Airborne Particles, Wiley, New York, 1999.

    Google Scholar 

  2. N. M. Ahfat, G. Buckton, R. Burrows, and M. D. Ticehurst. Predicting mixing performance using surface energy measurements. Int. J. Pharm. 156:89-95 (1997).

    Google Scholar 

  3. D. Cline and R. Dalby. Predicting the quality of powders for inhalation from surface energy and area. Pharm. Res. 19:1274-1277 (2002).

    Google Scholar 

  4. G. Buckton. Characterisation of small changes in the physical properties of powders of significance for dry powder inhaler formulations. Adv. Drug Deliv. Rev. 26:17-27 (1997).

    Google Scholar 

  5. R. N. Jashnani, P. R. Byron, and R. N. Dalby. Testing of Dry Powder Aerosol Formulations in Different Environmental-Conditions. Int. J. Pharm. 113:123-130 (1995).

    Google Scholar 

  6. V. Berard, E. Lesniewska, C. Andres, D. Pertuy, C. Laroche, and Y. Pourcelot. Dry powder inhaler: influence of humidity on topology and adhesion studied by AFM. Int. J. Pharm. 232:213-224 (2002).

    Google Scholar 

  7. R. Price, P. M. Young, S. Edge, and J. N. Staniforth. The influence of relative humidity on particulate interactions in carrierbased dry powder inhaler formulations. Int. J. Pharm. 246:47-59 (2002).

    Google Scholar 

  8. M. C. Korecki and P. J. Stewart. Adhesion of solid particles to solid surface. A.M.A. Arch. Env. Health 1:13-21 (1987).

    Google Scholar 

  9. J. N. Staniforth, J. E. Rees, F. K. Lai, and J. A. Hersey. Determination of interparticluate forces in ordered powder mixes. J. Pharm. Pharmacol. 33:485-490 (1981).

    Google Scholar 

  10. M. E. Mullin, L. P. Michaels, V. Menon, B. Locke, and M. B. Ranade. Effect of geometry on particle adhesion. Aerosol Sci. Tech. 17:105-118 (1992).

    Google Scholar 

  11. W. A. Ducker, T. J. Senden, and R. M. Pashley. Direct Measurement of Colloidal Forces Using an Atomic Force Microscope. Nature 353:239-241 (1991).

    Google Scholar 

  12. H. Hertz. Study on the contact of elastic solid bodies (SLA translations, SLA-57-1164). Zeitschr. F. Reine Angewandte Mathehmatik 29:156-171 (1881).

    Google Scholar 

  13. K. L. Jonhson, K. Kendall, and A. D. Roberts. Surface energy and the contact of elastic solids. Proc. Roy. Soc. London 324:301-303 (1971).

    Google Scholar 

  14. B. V. Deryaguin, V. M. Müller, and Y. P. Toporov. Effect of contact deformations on the adhesion of particles. J. Colloid Interface Sci. 53:314-325 (1975).

    Google Scholar 

  15. L. R. Fisher and J. N. Israelachvili. Direct measurements of the effect of meniscus forces on adhesion: a study of the applicability of macroscopic thermodynamics to microscopic surfaces. Colloids and Surfaces 3:303-319 (1981).

    Google Scholar 

  16. E. R. Beach, G. W. Tormoen, J. Drelich, and R. Han. Pull-off force measurements between rough surfaces by atomic force microscopy. J. Colloid Interface Sci. 247:84-99 (2002).

    Google Scholar 

  17. U. Sindel and I. Zimmermann. Measurement of interaction forces between individual powder particles using an atomic force microscope. Powder Technol. 117:247-254 (2001).

    Google Scholar 

  18. J. C. Hooton, C. S. German, S. Allen, M. C. Davies, C. J. Roberts, S. J. B. Tendler, and P. M. Williams. Characterization of particleinteractions by atomic force microscopy: Effect of contact area. Pharm. Res. 20:508-514 (2003).

    Google Scholar 

  19. P. G. Royall, D. Q. M. Craig, D. M. Price, M. Reading, and T. J. Lever. An investigation into the use of micro-thermal analysis for the solid state characterisation of an HPMC tablet formulation. Int. J. Pharm. 192:97-103 (1999).

    Google Scholar 

  20. L. Mackin, R. Zanon, J. M. Park, K. Foster, H. Opalenik, and M. Demonte. Quantification of low levels (<10%) of amorphous content in micronised active batches using dynamic vapour sorption and isothermal microcalorimetry. Int. J. Pharm. 231:227-236 (2002).

    Google Scholar 

  21. P. Begat, P. M. Young, S. Edge, J. S. Kaerger, and R. Price. The effect of mechanical processing on surface stability of pharmaceutical powders: Visualization by atomic force microscopy. J. Pharm. Sci. 92:611-620 (2003).

    Google Scholar 

  22. J. Albertsson, A. Oskarrson, and C. Svensson. X-ray Study of Budesonide: molecular structure and solid solution. Acta Crystallogr. B34:3027-3036 (1978).

    Google Scholar 

  23. J.-M. Leger, M. Goursolle, and M. Gadret. Structure Cristalline du Sulfate de Salbutamol [tert-butylamino-2 (Hydroxy-4hydroxymethyl-3 phenyl)-1 Ethanol. 1/2 H2SO4. Acta Crystallogr. B34:1203-1208 (1978).

    Google Scholar 

  24. M. Kurimoto, P. Subramony, and R. W. Gurney. Kinetic Stabilization of Biopolymers in Single-Crystal Hosts: green fluorescent Protein in Alpha-Lactose monohydrate. J. Am. Chem. Soc. 121:6952-6953 (1999).

    Google Scholar 

  25. D. M. Schaefer, M. Carpenter, R. Reifenberger, L. P. Demejo, and D. S. Rimai. Surface Force Interactions between Micrometer-Size Polystyrene Spheres and Silicon Substrates Using Atomic-Force Techniques. J. Adhes. Sci. Technol. 8:197-210 (1994).

    Google Scholar 

  26. D. M. Schaefer, M. Carpenter, B. Gady, R. Reifenberger, L. P. Demejo, and D. S. Rimai. Surface-Roughness and Its Influence on Particle Adhesion Using Atomic-Force Techniques. J. Adhes. Sci. Technol. 9:1049-1062 (1995).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Begat, P., Morton, D.A., Staniforth, J.N. et al. The Cohesive-Adhesive Balances in Dry Powder Inhaler Formulations I: Direct Quantification by Atomic Force Microscopy. Pharm Res 21, 1591–1597 (2004). https://doi.org/10.1023/B:PHAM.0000041453.24419.8a

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/B:PHAM.0000041453.24419.8a

Navigation