Skip to main content
Log in

The use of Pearlman's catalyst for the oxidation of Si–H bonds. Synthesis, structures and acid-catalysed condensation of novel α, ω-oligosiloxanediols HOSiMe2O(SiPh2O)nSiMe2OH (n = 1−4)

  • Published:
Silicon Chemistry

Abstract

The preparation of α , ω-oligosiloxanediolsHOSiMe2O(SiPh2O)nSiMe2OH(58; n=1–4) by the mild oxidation of thecorresponding organo-H-siloxaneHSiMe2O(SiPh2O)nSiMe2H(14; n = 1–4) using Pearlman's catalyst,Pd(OH2)/C, is reported. Compounds 57 possessnew hydrogen bonding modes, whose influences on the Si–O chainconformation are discussed and compared with the published analoguesHOSiPh2OSiPh2OSiPh2OH (9),HOSit-Bu2OSiMe2OSit-Bu2OH (10) andHOSiPh2OSiPh2OSiPh2OSiPh2OH(11), whereas compound 8 appears to be polycrystalline.Preliminary results of the HCl-catalysed condensation of58 are also reported, which provided complex mixtures ofoligomeric products in the case of 5 and 8, and (almost)exclusivelycyclo-(Me2SiO)2(Ph2SiO)2(12) andcyclo-(Me2SiO)2(Ph2SiO)3(13) in the case of 6 and 7, respectively. Compounds57 and 13 were investigated by X-raycrystallography.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Lickiss, P.D. 1995 Adv. Inorg. Chem. 42, 147-262.

    Google Scholar 

  2. Lickiss, P.D. 1996 The synthesis and structures of silanols. In Tailor-Made Silicon-Oxygen Compounds, pp. 47-59. Braunschweig: Vieweg.

    Google Scholar 

  3. Lickiss, P.D. 2001 Polysilanols. In Chemistry of Organic Silicon Compounds, Vol. 3, eds Z. Rappoport & Y. Apeloig, pp. 695-744. Chichester: John Wiley & Sons Ltd.

    Google Scholar 

  4. Noll, W. 1968 Chemistry and Technology of the Silicones. New York: Academic Press.

    Google Scholar 

  5. Semlyen, J.A. & Clarson, S.J. 1991 Siloxane Polymers. Engle-wood Cliffs, NJ: Prentice Hall.

    Google Scholar 

  6. Murugavel, R., Voigt, A., Walawalkar, M.G. & Roesky, H.W. 1996 Chem. Rev. 96 (6), 2205-2236.

    PubMed  Google Scholar 

  7. King, L. & Sullivan, A.C. 1999 Coord. Chem. Rev. 189, 19-57.

    Google Scholar 

  8. Lorenz, V., Fischer, A., Giessmann, S., Gilje, J.W., Gun'ko, Y., Jacob, K. & Edelmann, F.T. 2000 Coord. Chem. Rev. 206–207, 321-368.

    Google Scholar 

  9. Beckmann, J. & Jurkschat, K. 2001 Coord. Chem. Rev. 215, 267-300.

    Google Scholar 

  10. Denmark, S.E. & Sweis, R.F. 2002 Chem. Pharma. Bull. 50 (12), 1531-1541.

    Google Scholar 

  11. Denmark, S.E. & Sweis, R.F. 2002 Acc. Chem. Res. 35 (10), 835-846.

    PubMed  Google Scholar 

  12. Haiduc, I. & Edelmann, F.T. 1999 Supramolecular Organo-metallic Chemistry. Weinheim: VCH.

    Google Scholar 

  13. Matarasso-Tchiroukhine, E. 1990 J. Chem. Soc. Chem. Commun. (9), 681-682.

    Google Scholar 

  14. Schubert, U. & Lorenz, C. 1997 Inorg. Chem. 36 (6), 1258-1259.

    PubMed  Google Scholar 

  15. Shi, M. & Nicholas, K.M. 1997 J. Chem. Res. Syn. (11), 400-401.

  16. Tan, H., Yoshikawa, A., Gordon, M.S. & Espenson, J.H. 1999 Organometallics 18 (23), 4753-4757.

    Google Scholar 

  17. Adam, W., Mitchell, C.M., Saha-Möller, C.R. & Weichold, O. 1999 J. Am. Chem. Soc. 121 (10), 2097-2103.

    Google Scholar 

  18. Lee, M., Ko, S. & Chang, S. 2000 J. Am. Chem. Soc. 122 (48), 12011-12012.

    Google Scholar 

  19. Barnes, G.H., Jr. & Daughenbaugh, N.E. 1966 J. Org. Chem. 31 (3), 885-887.

    Google Scholar 

  20. Coupar, P.I., Jaffres, P.-A. & Morris, R.E. 1999 J. Chem. Soc. Dalton Trans. (13), 2183-2188.

  21. Hirabayashi, K., Mori, A., Kawashima, J., Suguro, M., Nishihra, Y. & Hiyama, T. 2000 J. Org. Chem. 65 (17), 5342-5349.

    PubMed  Google Scholar 

  22. Mori, K., Tano, M., Mizugaki, T., Ebitani, K. & Kaneda, K. 2002 New J. Chem. 26 (11), 1536-1538.

    Google Scholar 

  23. Pearlman, W.M. 1967 Tetrahedron Lett. (17), 1663-1664.

  24. Tsuji, J. 1995 Palladium Reagents and Catalysts: Innovations in Organic Synthesis. Chichester: John Wiley & Sons.

    Google Scholar 

  25. Toebes, M.L., van Dillen, J.A. & de Jong, K.P. 2001 J. Mol. Catal. A173 (1–2), 75-98.

    Google Scholar 

  26. Mori, Y. & Seki, M. 2002 Heterocycles 58, 125-127.

    Google Scholar 

  27. Mori, Y. & Seki, M. 2003 J. Org. Chem. 68 (4), 1571-1574.

    PubMed  Google Scholar 

  28. Card, R.J., Schmitt, J.L. & Simpson, J.M. 1983 J. Catal. 79 (1), 13-20.

    Google Scholar 

  29. Guisnet, M.R. 1990 Acc. Chem. Res. 23 (11), 392-398.

    Google Scholar 

  30. Beckmann, J., Dakternieks, D., Lim, A.E.K., Lim, K.F. & Jurkschat, K. 2004 Organometallics, submitted for publication.

  31. Jeffrey, G.A. 1997 An Introduction to Hydrogen Bonding. New York: Oxford University Press.

    Google Scholar 

  32. Steiner, T. 2002 Angew. Chem. Int. Ed. Engl. 41 (1), 48-76.

    Google Scholar 

  33. Behbehani, H., Brisdon, B.J., Mahon, M.F., Molloy, K.C. & Mazhar, M. 1993 J. Organomet. Chem. 463 (1–2), 41-45.

    Google Scholar 

  34. Graalmann, O., Klingebiel, U., Clegg, W., Haase, M. & Sheldrick, G.M. 1984 Chem. Ber. 117 (9), 2988-2997.

    Google Scholar 

  35. Beckmann, J., Jurkschat, K., Müller, D., Rabe, S. & Schürman, M. 1999 Organometallics 18 (12), 2326-2330.

    Google Scholar 

  36. Andrianov, K.A., Slonimskii, G.L., Levin, V.Y., Godovskii, Y.K., Kuznetsova, I.K., Tsvankin, D.Y., Moskalenko, V.A. & Kuteinikova, L.I. 1970 Vysokomol. Soedin., Ser. A 12 (6), 1268-1276.

    Google Scholar 

  37. Fritzsche, A.K. & Price, F.P. 1970 Pol y. Prepr. 11 (2), 462-469.

    Google Scholar 

  38. Jancke, H., Engelhardt, G., Kriegsmann, H. & Keller, F. 1979 Plast. Massy 26 (11), 612-616.

    Google Scholar 

  39. Engelhardt, G. & Jancke, H. 1981 Polym. Bull. 5 (11–12), 577-584.

    Google Scholar 

  40. Babu, G.N., Christopher, S.S. & Newmark, R.A. 1987 Macro-molecules 20 (11), 2654-2659.

    Google Scholar 

  41. Kendrick, T.C., Parbhoo, B. & White, J.W. 1989 Siloxane polymers and copolymers. In Chemistry of Organic Silicon Compounds, Vol. 2, eds S. Patai & Z. Rappoport, pp. 1289-1361. Chichester: John Wiley & Sons Ltd.

    Google Scholar 

  42. Zavin, B.G., Strelkova, T.V., Kovalenko, S.I., Rabkina, A.Y., Sablina, G.F. & Ronova, I.A. 1993 Ph. Prikl. Spektrosk. 58 (5–6), 516-522.

    Google Scholar 

  43. Zavin, B.G., Rabkina, A.Y., Strelkova, T.V. & Ronova, J.A. 1996 Pol y. Prepr. 37 (2), 712-713.

    Google Scholar 

  44. Cypryk, M., Kazmierski, K., Fortuniak, W. & Chojnowski, J. 2000 Macromolecules 33 (5), 1536-1545.

    Google Scholar 

  45. Yang, M.H., Huang, W.J., Chien, T.C., Chen, C.M., Chang, H.Y., Chang, Y.S. & Chou, C. 2001 Polymer 42 (21), 8841-8846.

    Google Scholar 

  46. Brown, J.F. Jr. 1964 Fr. Patent 1356768.

  47. Brown, J.F. Jr. & Prescott, P.I. 1964 J. Am. Chem. Soc. 86 (7), 1402-1409.

    Google Scholar 

  48. Sporck, C.R. & Coleman, A.E. 1965 J. Phys. Chem. 69 (3), 1066-1067.

    Google Scholar 

  49. Andrianov, K.A., Akushkina, S.E. & Guinava, L.N. 1966 Khim Geterotsikl. Soedin. (6), 944.

  50. Shklover, V.E., Kalinin, A.E., Gusev, A.I., Bokii, N.G., Struchkov, Y.T., Andrianov, K.A. & Petrova, I.M. 1973 Zh. Strukt. Khim. 14 (4), 692-699.

    Google Scholar 

  51. SMART, SAINT and SADABS 1999 Siemens Analytical X-ray Instruments Inc. Madison, Wisconsin, USA.

  52. Farrugia, L.J. 1997 J. Appl. Crystallogr. 20, 565.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Beckmann, J., Dakternieks, D., Duthie, A. et al. The use of Pearlman's catalyst for the oxidation of Si–H bonds. Synthesis, structures and acid-catalysed condensation of novel α, ω-oligosiloxanediols HOSiMe2O(SiPh2O)nSiMe2OH (n = 1−4). Silicon Chemistry 2, 27–36 (2003). https://doi.org/10.1023/B:SILC.0000047924.69957.b1

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/B:SILC.0000047924.69957.b1

Navigation