Skip to main content
Log in

A Simple Parameterisation for Flux Footprint Predictions

  • Published:
Boundary-Layer Meteorology Aims and scope Submit manuscript

Abstract

Flux footprint functions estimate the location and relative importance of passive scalar sources influencing flux measurements at a given receptor height. These footprint estimates strongly vary in size, depending on receptor height, atmospheric stability, and surface roughness. Reliable footprint calculations from, e.g., Lagrangian stochastic models or large-eddy simulations are computationally expensive and cannot readily be computed for long-term observational programs. To facilitate more accessible footprint estimates, a scaling procedure is introduced for flux footprint functions over a range of stratifications from convective to stable, and receptor heights ranging from near the surface to the middle of the boundary layer. It is shown that, when applying this scaling procedure, footprint estimates collapse to an ensemble of similar curves. A simple parameterisation for the scaled footprint estimates is presented. This parameterisation accounts for the influence of the roughness length on the footprint and allows for a quick but precise algebraic footprint estimation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • de Haan, P. and Rotach, M. W.: 1998, ‘A Novel Approach to Atmospheric Dispersion Modelling: The Puff-Particle Model (PPM)’, Quart. J. Roy. Meteorol. Soc. 124, 2771–2792.

    Google Scholar 

  • Hanna, S. R., Chang, J. C., and Strimaitis, D. G.: 1993, ‘Hazardous Gas Model Evaluation with Field Observations’, Atmos. Environ. 27A, 2265–2281.

    Google Scholar 

  • Horst, T. W. and Weil, J. C.: 1992, ‘Footprint Estimation for Scalar Flux Measurements in the Atmospheric Surface Layer’, Boundary-Layer Meteorol. 59, 279–296.

    Article  Google Scholar 

  • Horst, T. W. and Weil, J. C.: 1994, ‘How Far is Far Enough?: The Fetch Requirements for Micrometeorological Measurement of Surface Fluxes’, J. Atmos. Ocean. Tech. 11, 1018–1025.

    Google Scholar 

  • Hsieh, C. I., Katul, G., and Chi, T.: 2000, ‘An Approximate Analytical Model for Footprint Estimation of Scalar Fluxes in Thermally Stratified Atmospheric Flows’, Adv. Water Resour. 23, 765–772.

    Article  Google Scholar 

  • Kljun, N., Kormann, R., Rotach, M. W., and Meixner, F. X.: 2003, ‘Comparison of the Lagrangian Footprint Model LPDM-B with an Analytical Footprint Model'. Boundary-Layer Meteorol. 106, 349–355.

    Article  Google Scholar 

  • Kljun, N., Rotach, M. W., and Schmid, H. P.: 2002, ‘A 3D Backward Lagrangian Footprint Model for a Wide Range of Boundary Layer Stratifications’, Boundary-Layer Meteorol. 103, 205–226.

    Article  Google Scholar 

  • Kormann, R. and Meixner, F. X.: 2001, ‘An Analytical Footprint Model for Non-Neutral Stratification’, Boundary-Layer Meteorol. 99, 207–224.

    Article  Google Scholar 

  • Miyake, M.: 1965, Transformation of the Atmospheric Boundary Layer over Inhomogeneous Surfaces, Sci. Rep. 5R-6, University of Washington, Seattle, U.S.A.

    Google Scholar 

  • Raupach, M. R., Antonia, R. A., and Rajagopalan, S.: 1991, ‘Rough-Wall Turbulent Boundary Layers’, Appl. Mech. Rev. 44, 1–25.

    Google Scholar 

  • Rotach, M. W.: 2001a, ‘Simulation of Urban-Scale Dispersion Using a Lagrangian Stochastic Dispersion Model’, Boundary-Layer Meteorol. 99, 379–410.

    Article  Google Scholar 

  • Rotach, M. W.: 2001b, ‘Urban-Scale Dispersion Modeling Taking into Account the Turbulence and Flow Characteristics of the Roughness Sublayer’, in 3rd International Symposium on Environmental Hydraulics, Tempe, AZ.

  • Rotach, M. W., Gryning. S.-E., and Tassone, C.: 1996, ‘A Two-Dimensional Lagrangian Stochastic Dispersion Model for Daytime Conditions’, Quart. J. Roy. Meteorol. Soc. 122, 367–389.

    Article  Google Scholar 

  • Schmid, H. P.: 1994, ‘Source Areas for Scalars and Scalar Fluxes’, Boundary-Layer Meteorol. 67, 293–318.

    Article  Google Scholar 

  • Schmid, H. P.: 2002, ‘Footprint Modeling for Vegetation Atmosphere Exchange Studies: A Review and Perspective’, Agric. For. Meteorol. 113, 159–184.

    Article  Google Scholar 

  • Stull, R. B.: 1988, An Introduction to Boundary Layer Meteorology, Kluwer Academic Publishers, Dordrecht, 666 pp.

    Google Scholar 

  • Van Ulden, A. P.: 1978, ‘Simple Estimates for Vertical Diffusion from Sources near the Ground’, Atmos. Environ. 12, 2125–2129.

    Google Scholar 

  • Weil, J. C. and Horst, T. W.: 1992, ‘Footprint Estimates for Atmospheric Flux Measurements in the Convective Boundary Layer’, in S. Schartz and W. Slinn (eds.), Precipitation Scavening and Atmosphere-Surface Exchange, Vol. 2, pp. 717–728.

  • Wilson, J. D. and Swaters, G. E.: 1991, ‘The Source Area Influencing aMeasurement in the Planetary Boundary Layer: The “Footprint” and the “Distribution of Contact Distance” ’, Boundary-Layer Meteorol. 55, 25–46.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kljun, N., Calanca, P., Rotach, M.W. et al. A Simple Parameterisation for Flux Footprint Predictions. Boundary-Layer Meteorology 112, 503–523 (2004). https://doi.org/10.1023/B:BOUN.0000030653.71031.96

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/B:BOUN.0000030653.71031.96

Navigation