Skip to main content
Log in

Landscape- and field-scale control of spatial variation of soil properties in Mediterranean montane meadows

  • Published:
Biogeochemistry Aims and scope Submit manuscript

Abstract

Soil properties of terrestrial ecosystems are controlled by a variety of factors that operate at different scales. We tested the role of abiotic and biotic factors that potentially influence spatial gradients of total ion content, acidity, carbon, total nitrogen, and total phosphorous in topsoil. We studied a network of Mediterranean montane meadows that spans a 2000-m altitudinal gradient. The analyzed factors were grouped into two spatial scales: a landscape scale (climate and land form) and a field scale (topography, soil texture, soil moisture, and plant community composition). Total ion content and acidity are the major and independent variation trends of soil geochemistry. Soil acidity, carbon, and nitrogen increased along the altitudinal gradient whereas there was no relationship between total ion content and phosphorous and elevation. Climate had no direct influence on the analyzed gradients; all effects of climate were indirect through plant community composition and/or soil moisture. The results point to three types of models that explain the gradients of soil chemical composition: (1) a predominantly biotic control of carbon and nitrogen, (2) a predominantly abiotic control of acidity, and (3) a combined biotic and abiotic control of total ionic content. No direct or indirect effects explained the gradient of phosphorous. In our study region (central Spain), climate is predicted to turn more arid and soils will lose moisture. According to our models, this will result in less acid and fertile soils, and any change in plant community composition will modify gradients of soil carbon, nitrogen, total ion content, and acidity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Aerts R., Verhoeven J.T.A. and Whigham D.F. 1999. Plant-mediated controls on nutrient cycling in temperate fens and bogs. Ecology 80: 2170–2181.

    Google Scholar 

  • Albert M.J., Escudero A. and Iriondo J.M. 2001. Female reproductive success of narrow endemic Erodium paularense in contrasting microhabitats. Ecology 82: 1734–1747.

    Google Scholar 

  • Arndt J.L. and Richardson J.L. 1989. Geochemistry of hydric soil salinity in a recharge-throughflow-discharge prairie–pothole wetland system. Soil Sci. Soc. Am. J. 53: 848–855.

    Google Scholar 

  • Athavale R.N., Rangarajan R. and Muralidharan D. 1998. Influx and efflux of moisture in a desert soil during a 1 year period. Water Resources Res. 34: 2871–2877.

    Google Scholar 

  • Barbour M.G., Burk J.H. and Pitts W.D. 1987. Terrestrial Plant Ecology. The Benjamin/Cummings Publishing Company, Menlo Park, CA.

    Google Scholar 

  • Barry R.G. 1990. Changes in mountain climate and glacio hydrological responses. Mountain Res. Dev. 10: 161–170.

    Google Scholar 

  • Barry R.G. 1992. Mountain climatology and past and potential future climatic changes in mountain regions: a review. Mountain Res. Dev. 12: 71–86.

    Google Scholar 

  • Bentler P.M. 1989. EQS structural equations program manual. BMDP Statistical Software, Los Angeles.

    Google Scholar 

  • Bernáldez F.G. and Rey Benayas J.M. 1992. Geochemical relationships between groundwater and wetland soils and their effects on vegetation in central Spain. Geoderma 55: 273–288.

    Google Scholar 

  • Bernáldez F.G., Rey Benayas J.M. and Martínez A. 1993. Ecological impact typology on wetlands produced by groundwater extraction (Douro River, Spain). J. Hydrol. 141: 219–238.

    Google Scholar 

  • Blackstock T.H., Stevens D.P., Stevens P.A., Mockridge C.P. and Yeo M.J.M. 1998. Edaphic relationships among Cirsio–Molinietum and related wet grassland communities in lowland Wales. J. Veg. Sci. 9: 431–444.

    Google Scholar 

  • Blank R.R., Svejcar T.J. and Riegel G.M. 1995. Soil genesis and morphology of a montane meadow in the northern Sierra Nevada range. Soil Sci. 160: 136–152.

    Google Scholar 

  • Boix-Fayos C., Calvo Cases A., Imeson A.C., Soriano Soto M.D. and Tiemessen I.R. 1998. Spatial and short term temporal variations in runoff, soil aggregation and other soil properties along a Mediterranean climatological gradient. Catena 33: 123–138.

    Google Scholar 

  • Bolland M.D.A. and Allen D.G. 1998. Spatial variation of soil test phosphorus and potassium, oxalate-extractable iron and aluminum, phosphorus-retention index, and organic carbon content in soils of Western Australia. Comm. Soil Sci. Plant Anal. 29: 381–392.

    Google Scholar 

  • Bouten W. and Witter J.V. 1992. Modeling soil water dynamics in a forest ecosystem. II: evaluation of spatial variation of soil profiles. Hydrol. Processes 6: 445–454.

    Google Scholar 

  • Bowman W.D., Theodose T.A. and Fisk M.C. 1995. Physiological and production responses of plant growth forms to increases in limiting resources in alpine tundra: implications for differential community response to environmental change. Oecologia (Berlin) 101: 217–227.

    Google Scholar 

  • Boyoucos G. 1935. Journal of the American Society of Agronomy. American Society Testing Material (ASTM) No. 152 H.

  • Burke I.C. 2000. Biogeochemistry in a shortgrass landscape: control by topography, soil texture, and microclimate. Ecology 81: 2686–2703.

    Google Scholar 

  • Burke I.C., Lauenroth W.K. Riggle R., Brannen P., Madigan B. and Beard S. 1999. Spatial variability of soil properties in the shortgrass steppe: the relative importance of topography, grazing, microsite, and plant species in controlling spatial patterns. Ecosystems 2: 422–438.

    Google Scholar 

  • Buse A. 1982. The likehood ratio, Wald and Lagrange multiplier tests: an expository note. Am. Statistician 36: 153–157.

    Google Scholar 

  • Butterworth J.A., Schulze R.E., Simmonds L.P., Moriarty P. and Mugabe F. 1999a. Hydrological processes and water resources management in a dryland environment IV: long-term groundwater level fluctuations due to variation in rainfall. Hydrol. Earth Syst. Sci. 3: 353–361.

    Google Scholar 

  • Butterworth J.A., Macdonald D.M.J., Bromley J., Simmonds L.P., Lovell C.J. and Mugabe F. 1999b. Hydrological processes and water resources management in a dryland environment III: groundwater recharge and recession in a shallow weathered aquifer. Hydrol. Earth Syst. Sci. 3: 345–352.

    Google Scholar 

  • Callaway R.M. 1995. Positive interactions among plants. Bot. Rev. 61: 306–349.

    Google Scholar 

  • Callaway R.M. 1997. Positive interactions in plant communities and the individualistic-continuum concept. Oecologia 112: 143–149.

    Google Scholar 

  • Chatterjee S. and Price B. 1991. Regression Analysis by Example. 2nd edn. John Wiley & Sons, New York.

    Google Scholar 

  • Colomer M.G.S. 1998. Heterogeneidad del medio abiótico, composición florística y diversidad en humedales montanos mediterráneos (sierra de Guadarrama). Ph.D. Thesis, Universidad Autónoma de Madrid, Madrid, Spain.

    Google Scholar 

  • Conant R.T., Paustian K. and Elliot E.T. 2001. Grassland management and conversion into grassland: effects on soil carbon. Ecol. Applic. 11: 343–355.

    Google Scholar 

  • Crawford C.A.G. and Hergert G.W. 1997. Incorporating spatial trends and anisotropy in geostatistical mapping of soil properties. Soil Sci. Soc. Am. J. 61: 298–309.

    Google Scholar 

  • Davidson E.A. 1995. Spatial covariation of soil organic carbon, clay content, and drainage class at a regional scale. Landscape Ecol. 10: 349–362.

    Google Scholar 

  • De Valpine P. and Harte J. 2001. Plant responses to experimental warming in a montane meadow. Ecology 82: 637–648.

    Google Scholar 

  • Fitzjohn C., Ternan J.L. and Williams A.G. 1998. Soil moisture variability in a semi-arid gully catchment: implications for runoff and erosion control. Catena 32: 55–70.

    Google Scholar 

  • Gao Q., Li J. and Zheng H. 1996. A dynamic landscape simulation model for the alkaline grasslands on Songnen Plain in northeast China. Landscape Ecol. 11: 339–349.

    Google Scholar 

  • Giesler R., Hogberg M. and Hogberg P. 1998. Soil chemistry and plants in Fennoscandian boreal forest as exemplified by a local gradient. Ecology 79: 119–137.

    Google Scholar 

  • Gilmanov T.G., Parton W.J. and Ojima D.S. 1997. Testing the ‘CENTURY’ ecosystem level model on data sets from eight grassland sites in the former USSR representing a wide climatic/soil gradient. Ecol. Model. 96: 191–210.

    Google Scholar 

  • Goderya F.S. 1998. Field scale variations in soil properties for spatially variable control: a review. J. Soil Cont. 7: 243–264.

    Google Scholar 

  • Gonzalez O.J. and Zak D.R. 1994. Geostatistical analysis of soil properties in a secondary tropical dry forest, St. Lucia, West Indies. Plant Soil 163: 45–54.

    Google Scholar 

  • Goovaerts P. and Chiang C.N. 1993. Temporal persistence of spatial patterns for mineralizable nitrogen and selected soil properties. Soil Sci. Soc. Am. J. 57: 372–381.

    Google Scholar 

  • Grigal D.F., McRoberts R.E. and Ohmann L.F. 1991. Spatial variation in chemical properties of forest floor and surface mineral soil in the north central United States. Soil Sci. 151: 282–290.

    Google Scholar 

  • Groffman P.M., Hanson G.C., Kiviat E. and Stevens G. 1996. Variation in microbial biomass and activity in four different wetland types. Soil Sci. Soc. Am. J. 60: 622–629.

    Google Scholar 

  • Harte J., Torn M.S., Chang F.R., Feifarek B., Kinzig A.P., Shaw R. and Shen K. 1995. Global warming and soil microclimate: results from a meadow-warming experiment. Ecol. Applic. 5: 132–150.

    Google Scholar 

  • Hayduk L.A. 1987. Structural Equation Modeling with LISREL. Essentials and Advances. The John Hopkins University Press, BA.

    Google Scholar 

  • Herrera P. 1987. Aspectos ecológicos de las aguas subterráneas en la facies arcósica de la cuenca de Madrid. Ph.D. Thesis. Universidad de Alcalá de Henares, Madrid, Spain.

    Google Scholar 

  • Hibbard K.A., Archer S., Schimel D.S. and Valentine D.W. 2001. Biogechemical changes accompanying woody plant encroachment in a subtropical savanna. Ecology 82: 1099–2011.

    Google Scholar 

  • Hokkanen T.J., Jarvinen E. and Kuuluvainen T. 1995. Properties of top soil and the relationship between soil and trees in a boreal Scots pine stand. Silva Fennica 29: 189–203.

    Google Scholar 

  • Intergovernmental Panel on Climate Change (IPCC) 1995. Climate Change 1994: Radiative Forcing of Climate Change and Evaluation of the IPCC IS92 Emission Scenarios. Cambridge University Press, Cambridge.

    Google Scholar 

  • Jarolimek I., Banasova V. and Otahelova H. 2000. Changes in alluvial grassland vegetation in relation to flood dynamics and soil moisture. Ekologia-Bratislava 19: 39–53.

    Google Scholar 

  • Johnson L.C., Shaver G.R., Cades D.H., Rastetter E., Nadelhoffer K., Giblin A., Laundre J. and Stanley A. 2000. Plant carbon–nutrient interactions control CO2 exchange in Alaskan wet sedge tundra ecosystems. Ecology 81: 453–469.

    Google Scholar 

  • Kumar A., Kuhad M.S., Grewal M.S. and Dahiya I.S. 1996. Evaluation of spatial variation in some soil properties of alluvial plains. Arid Soil Res. Rehab. 10: 21–30.

    Google Scholar 

  • Lev A. and King R.H. 1999. Spatial variation of soil development in a high arctic soil landscape: Truelove Lowland, Devon Island, Nunavut, Canada. Permafrost Periglacial Processes 10: 289–307.

    Google Scholar 

  • Linusson A.C., Berlin G.A. and Olsson E.G.A. 1998. Reduced community diversity in semi-natural meadows in southern Sweden, 1965–1990. Plant Ecol. 136: 77–94.

    Google Scholar 

  • Loehlin J.C. 1987. Latent Variable Models. Lawrence Erlbaum, Hillsdale, NJ, USA.

    Google Scholar 

  • McCune B. and Mefford M.J. 1995. PC-ORD. Multivariate Analysis of Ecological Data, Version 2.0. MjM Software Design, Gleneden Beach, OR, USA.

    Google Scholar 

  • Meinzer F.C., Andrade J.L., Goldstein G., Holbrook N.M., Cavelier J. and Wright S.J. 1999. Partitioning of soil water among canopy trees in a seasonally dry tropical forest. Oecologia 121: 293–301.

    Google Scholar 

  • Mitchell R.J. 1992. Testing evolutionary and ecological hypotheses using path analysis and structural equation modeling. Funct. Ecol. 6: 123–129.

    Google Scholar 

  • Mitchell R.J. 1993. Path analysis: pollination. In: Scheiner S.M. and Gurevitch J. (eds) Design and Analysis of Ecological Experiments. Chapman and Hall, New York, pp. 211–231.

    Google Scholar 

  • Moustafa M.M. and Yomota A. 1998. Use of a covariance variogram to investigate influence of subsurface drainage on spatial variability of soil-water properties. Agric. Water Manag. 37: 1–20.

    Google Scholar 

  • Oñate J. and Pou A. 1996. Temperature variations in Spain since 1901: a preliminary analysis. Int. J. Climat. 16: 805–815.

    Google Scholar 

  • Petraitis P.S., Dunham A.E. and Niewiarowski P.H. 1996. Inferring multiple causality: the limitations of path analysis. Funct. Ecol. 10: 421–431.

    Google Scholar 

  • Rahman S., Munn L.C., Zhang R. and Vance G.F. 1996. Rocky mountain forest soils: evaluating spatial variability using conventional statistics and geostatistics. Can. J. Soil Sci. 76: 501–507.

    Google Scholar 

  • Raji B.A. and Alagbe S.A. 2000. A topo-geochemical sequence study of groundwater in Asa drainage basin, Kwara State, Nigeria. Env. Geol. 39: 544–548.

    Google Scholar 

  • Reese R.E. and Moorhead K.K. 1996. Spatial characteristics of soil properties along an elevational gradient in a Carolina bay wetland. Soil Sci. Soc. Am. J. 60: 1273–1277.

    Google Scholar 

  • Rey J.M. 1999. Modeling potential evapotranspiration of potential vegetation. Ecol. Model. 123: 141–159.

    Google Scholar 

  • Rey Benayas J.M. 1995. Patterns of diversity in the strata of boreal montane forest in British Columbia. J. Veg. Sci. 6: 95–98.

    Google Scholar 

  • Rey Benayas J.M., Colomer M.G.S., Levassor C. and Vázquez-Dodero I. 1998. The role of wet grasslands in biological conservation in Mediterranean landscapes. In: Joyce C.B. and Wade P.M. (eds) European Wet Grasslands: Biodiversity, Management and Restoration John Wiley, Chichester, UK, pp. 61–72.

    Google Scholar 

  • Rey Benayas J.M., García S., Colomer M. and Levassor C. 1999. Effects of area, environmental status and environmental variation on species richness per unit area in Mediterranean wetlands. J. Veg. Sci. 10: 275–280.

    Google Scholar 

  • Roy S. 1996. Spatial variation of soil physico-chemical properties influenced by spatial and temporal variation of litter in a dry tropical forest floor. Oecologia Montana 5: 21–26.

    Google Scholar 

  • Sanz C. 1988. El relieve del Guadarrama Oriental. Comunidad de Madrid, Madrid, Spain.

    Google Scholar 

  • SAS Institute. 1990. SAS/STAT User's guide. Rel. 6.04. SAS Institute, Cary, NC, USA.

    Google Scholar 

  • Shipley B. 1999. Testing causal explanations in organismal biology: causation, correlation and structural equation modeling. Oikos 86: 374–382.

    Google Scholar 

  • Sinowski W. and Auerswald K. 1999. Using relief parameters in a discriminant analysis to stratify geological areas with different spatial variability of soil properties. Geoderma 89: 113–128.

    Google Scholar 

  • Sival F.P. and Grootjans A.P. 1996. Dynamics of seasonal bicarbonate supply in a dune slack: effects on organic matter, nitrogen pool and vegetation succession. Vegetatio 126: 39–50.

    Google Scholar 

  • Steltzer H. and Bowman W.D. 1998. Differential influence of plant species on soil nitrogen transformations within moist meadow alpine tundra. Ecosystems 1: 464–474.

    Google Scholar 

  • Stottlemyer R. and Troendle C.A. 1999. Effect of subalpine canopy removal on snowpack, soil solution, and nutrient export, Fraser Experimental Forest, CO. Hydrol. Processes 13: 2287–2299.

    Google Scholar 

  • Strong D.T., Sale P.W.G. and Helyar K.R. 1998. The influence of the soil matrix on nitrogen mineralisation and nitrification. I. Spatial variation and a hierarchy of soil properties. Aust. J. Soil Res. 36: 429–447.

    Google Scholar 

  • Tanaka J.S. 1987. 'How big is big enough?': sample size and goodness of fit in structural equation models with latent variables. Child Dev. 58: 134–146.

    Google Scholar 

  • Tanaka J.S. and Huba G.J. 1985. A fit index for covariance structure models under arbitrary GLS estimation. Brit. J. Math. Stat. Psyc. 38: 197–201.

    Google Scholar 

  • Thornwaite C.W. 1948. An approach toward a rational classification of climate. Geog. Rev. 38: 55–94.

    Google Scholar 

  • Updegraff K., Pastor J., Bridgham S.D. and Johnston C.A. 1995. Environmental and substrate controls over carbon and nitrogen mineralization in northern wetlands. Ecol. Applic. 5: 151–163.

    Google Scholar 

  • Van Breemen N., Mulder J. and Discoll C.T. 1983. Acidification and alcalinization of soils. Plant Soil 75: 283–308.

    Google Scholar 

  • Vervoort N.W., Radcliffe D.E. and West L.T. 1999. Soil structure development and preferential solute flow. Water Resour. Res. 35: 913–928.

    Google Scholar 

  • Wang G.G. and Klinka K. 1996. Classification of moisture and aeration regimes in sub-boreal forest soils. Env. Monit. Asses. 39: 451–469.

    Google Scholar 

  • Weisberg P.J. and Baker W.L. 1995. Spatial variation in tree seedling and Krummholz growth in the forest-tundra ecotone of Rocky Mountain National Park, Colorado, USA. Arctic Alp. Res. 27: 116–129.

    Google Scholar 

  • Wendroth O., Pohl W., Koszinski S., Rogasik H., Ritsema C.J. and Nielsen D.R. 1999. Spatio-temporal patterns and covariance structures of soil water status in two Northeast-German field sites. J. Hydrol. 215: 38–58.

    Google Scholar 

  • Yeakley J.A., Swank W.T., Swift L.W., Hornberger G.M. and Shugart H.H. 1998. Soil moisture gradients and controls on a southern Appalachian hillslope from drought through recharge. Hydrol. Earth Syst. Sci. 2: 41–49.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to José María Rey Benayas.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Benayas, J.M.R., Sánchez-Colomer, M.G. & Escudero, A. Landscape- and field-scale control of spatial variation of soil properties in Mediterranean montane meadows. Biogeochemistry 69, 207–225 (2004). https://doi.org/10.1023/B:BIOG.0000031047.12083.d4

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/B:BIOG.0000031047.12083.d4

Navigation