Skip to main content
Log in

Two-Parameter Thermal Lattice BGK Model with a Controllable Prandtl Number

  • Published:
Journal of Scientific Computing Aims and scope Submit manuscript

Abstract

In this paper, two time relaxation parameters are introduce to a thermal lattice BGK, model to make its Prandtl number controllable. The dependency of the Prandtl number on the two parameters is derived. Numerical measurement of the transport coefficients is used to demonstrate the validity of the method. Furthermore, two examples of convective heat transfer are calculated, with one to show the effectiveness, and the other to show the breakdown of the two-parameter formulation under different conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  • Alexander, F., Chen, S., and Sterling, J. (1993). Lattice Boltzmann thermohydrodynamics. Phys. Rev. E 47, R2249.

    Google Scholar 

  • Behrend, O., Harris, R., and Warren, P. (1994). Hydrodynamic behavior of lattice Boltzmann and lattice Bhatnagar-Gross-Krook models. Phys. Rev. E 50(6), 4586-4595.

    Google Scholar 

  • Berman, N., and Santos, V. (1969). Laminar velocity profiles in developing flows using a laser Doppler technique. AIChE J. 15, 323-327.

    Google Scholar 

  • Chen, H., Chen, S., and Matthaeus, W. (1992). Recovery of Navier-stokes equations using a lattice-gas Boltzmann method. Phys. Rev. A 45, 5771.

    Google Scholar 

  • Chen, H., Chen, S., Martinez, D., and Matthaeus, W. (1991). Lattice Boltzmann model for simulation of magnetohydrodynamic phenomena. Phys. Rev. Lett. 67, 3776.

    Google Scholar 

  • Chen, Y., Ohashi, H., and Akiyama, M. (1994). Thermal lattice Bhatnagar-Gross-Krook model without nonlinear deviations in macrodynamic equations, Phys. Rev. E 50(4), 2776-2783.

    Google Scholar 

  • Chen, Y., Ohashi, H., and Akiyama, M. (1995a). Heat transfer in lattice BGK modeled fluid. J. Stat. Phys. 81(1–2).

    Google Scholar 

  • Chen, Y., Ohashi, H., and Akiyama, M. (1995b). Prandtl number of the lattice Bhatnagar-Gross-Krook fluid. Phys. Fluid A 7(9), 2280-2284.

    Google Scholar 

  • Hwang, C., and Fan, L. (1964). Finite difference analysis of forced-convection heat transfer in entrance of a flat rectangular duct, Appl. Sci. Res. Sect A 13, 401-422.

    Google Scholar 

  • Kadanoff, L., McNamara, G., and Zanetti, G. (1989). From automata to fluid flow: Comparisons of simulation and theory. Phys. Rev. E 40(8), 4527-4541.

    Google Scholar 

  • McNamara, G., and Alder, B. (1993). Analysis of the lattice Boltzmann treatment of hydrodynamics. Physica A 194, 218.

    Google Scholar 

  • Qian, Y. (1993). Simulation thermohydrodynamics with lattice BGK models. J. Sci. Comput. 8(3), 231-242.

    Google Scholar 

  • Qian, Y., d'Humières, D., and Lallemand, P. (1992). Lattice BGK models for Navier-Stokes equation. Europhys. Lett. 17(6), 479-484.

    Google Scholar 

  • Schlichting, H. (1987). Boundary-Layer Theory. Seventh Edition, McGraw-Hill.

  • Shan, X., and Chen, H. (1993). Lattice Boltzmann model for simulating flows with multiple phases and components. Phys. Rev. E 47(3), 1815-1819.

    Google Scholar 

  • Stephan, K. (1959). Wärmeübergang und druckabfall bei nicht ausgebildeter Laminarströmung in Rohren und in ebenen Spalten. Chem.-Ing.-Tech. 31, 773-778.

    Google Scholar 

  • Wang, Y., and Longwell, P. (1964). Laminar flow in the inlet section of parallel plates. AIChE J. 10, 323-329.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chen, Y., Ohashi, H. & Akiyama, M. Two-Parameter Thermal Lattice BGK Model with a Controllable Prandtl Number. Journal of Scientific Computing 12, 169–185 (1997). https://doi.org/10.1023/A:1025621832215

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1025621832215

Navigation