Skip to main content
Log in

Theoretical Study of Molecular Structure, Tautomerism, and Geometrical Isomerism of N-Methyl- and N-Phenyl-Substituted Cyclic Imidazolines, Oxazolines, and Thiazolines

  • Published:
Structural Chemistry Aims and scope Submit manuscript

Abstract

The geometries of various tautomers and isomers of 2-methylamino-2-imidazoline, 2-methylamino-2-oxazoline, 2-methylamino-2-thiazoline, 2-phenylamino-2-imidazoline, 2-phenylamino-2-oxazoline, and 2-phenylamino-2-thiazoline have been studied using the Becke3LYP/6–31+G(d,p) DFT, ONIOM(Becke3LYP/6–31+G(d,p):HF/3–21G*) and ONIOM(Becke3LYP/6–31+G(d,p):AM1) methods. The optimized geometries indicate that these molecules show a distinctly nonplanar configuration of the cyclic moieties. In the gas phase, the amino tautomers (with exception of 2-phenylamino-2-imidazoline) are computed to be more stable than the imino tautomers. Of the two possible (E and Z) isomers of methyl and phenyl derivatives of imino-oxazolidine and imino-thiazolidine species, the (Z) isomers have the lowest energy. The iminozation free energies in the gas phase were found to be 5 – 15 kJ/mol. Absolute values of K T depend strongly on the accuracy of the method used for calculation of free energy. Solvation (using the MD simulations) causes, in most cases, a shift in tautomeric preference toward the imino species.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. Grout, R. J. In The Chemistry of Aminidines and Imidates; Patai, S., Ed; Wiley: New York, 1975; Vol. 1, pp. 255-281.

    Google Scholar 

  2. Elguero, J.; Marzin, C.; Katritzky, A. R.; Linda, P. The Tautomerism of Heterocycles; Academic Press: New York, 1975.

    Google Scholar 

  3. Raczynska, E. D.; Laurence, C. J. Chem. Res. 1990, p. 338.

  4. Taft, R. W.; Raczynska, E. D.; Maria, P. C.; Leito, I.; Lewandowski, W.; Kurg, R.; Gal, J.F.; Decouzon, M.; Anvia, F. Fresenius J. Anal. Chem. 1996, 355, 412.

    Google Scholar 

  5. Oszczapowicz, J. In The Chemistry of Aminidines and Imidates; Patai, S.; Rappoport, Z., Eds.; Wiley: New York, 1991; Vol. 2, pp. 623-668.

    Google Scholar 

  6. Timmermans, P. B. M. W. M.; Smith, R. D. In Burger's Medicinal Chemistry and Drug Discovery, 5th edn. Volume 2. Therapeutic Agents; Wiley: New York, 1996; pp. 265-321.

    Google Scholar 

  7. Regunathan, S.; Reis, D. J. Annu Rev. Pharmacol. Toxicol. 1996, 36, 511.

    Google Scholar 

  8. Munk, S. A. et al. J. Med. Chem. 1996, 39, 3533.

    Google Scholar 

  9. Mailard, M. C. et al. J. Med. Chem. 1998, 41, 3048.

    Google Scholar 

  10. Pigini, M.; Ouaglia, W.; Gentili, F.; Marucci, G.; Cantalamessa, F.; Franchini, S.; Sorbi, C.; Brasili, L. Bioorg. Med. Chem. 2000, 8, 883.

    Google Scholar 

  11. Worth, G. A.; King, P. M.; Richards, W. G. Biochim. Biophys. Acta 1989, 993, 134.

    Google Scholar 

  12. De Vries, H.; Van Duijnen, P. Th.; Biophys. Chem. 1992, 43, 139.

    Google Scholar 

  13. Caminiti, R.; Pieretti, A.; Bencivenni, L.; Ramondo, F.; Sanna, N. J. Phys. Chem. 1996, 100, 10928.

    Google Scholar 

  14. Raczyńska, E. D.; Taft, R. W. Polish J. Chem. 1998, 72, 1054.

    Google Scholar 

  15. Marchand-Geneste, M.; Carpy, A. J. Mol. Struct. Theochem. 1999, 465, 209.

    Google Scholar 

  16. Remko, M.; Walsh, O. A.; Richards, W. G. Chem. Phys. Lett. 2001, 336, 156.

    Google Scholar 

  17. Remko, M., Walsh, O. A.; Richards, W. G. Chem. Phys. Phys. Chem. 2001, 3, 901.

    Google Scholar 

  18. Remko, M.; Walsh, O. A.; Richards, W. G. J. Phys. Chem. A 2001, 105, 6926.

    Google Scholar 

  19. Gaussian 98 (Revision A.7), Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Zakrzewski, V. G.; Montgomery, Jr., J. A.; Stratmann, R. E.; Burant, J. C.; Dapprich, S.; Millam, J. M.; Daniels, A. D.; Kudin, K. N.; Strain, M. C.; Farkas, O.; Tomasi, J.; Barone, V.; Cossi, M.; Cammi, R.; Mennucci, B.; Pomelli, C.; Adamo, C.; Clifford, S.; Ochterski, J.; Petersson, G. A.; Ayala, P. Y.; Cui, Q.; Morokuma, K.; Malick, D. K.; Rabuck, A. D.; Raghavachari, K.; Foresman, J. B.; Cioslowski, J.; Ortiz, J. V.; Stefanov, B. B.; Liu, G.; Liashenko, A.; Piskorz, P.; Komaromi, I.; Gomperts, R.; Martin, R. L.; Fox, D. J.; Keith, T.; Al-Laham, M. A.; Peng, C. Y.; Nanayakkara, A.; Gonzalez, C.; Challacombe, M.; Gill, P. M. W.; Johnson, B.; Chen, W.; Wong, M. W.; Andres, J. L.; Gonzalez, C.; Head-Gordon, M.; Replogle, E. S.; and Pople, J. A.; Gaussian98, Rev. A.7.; Gaussian, Pittsburgh, PA, 1998.

    Google Scholar 

  20. Becke, A. D. Phys. Rev. 1988, A38, 3098.

    Google Scholar 

  21. Becke, A. D. J. Chem. Phys. 1993, 98, 5648.

    Google Scholar 

  22. Lee, C.; Yang, W.; Paar, R. G. Phys. Rev. 1988, B37, 785.

    Google Scholar 

  23. Parr, R. G.; Wang, W. Density-Functional Theory of Atoms and Molecules; Oxford University Press: New York, 1994.

    Google Scholar 

  24. Neumann, R.; Nobes, R. H.; Handy, N. C. Mol. Phys. 1996, 87, 1.

    Google Scholar 

  25. Svensson, M.; Humbel, S.; Froese, R.D.J.; Matsubara, T.; Sieber, S.; Morokuma, K. J. Phys. Chem. 1996, 100, 19357.

    Google Scholar 

  26. Humbel, S.; Sieber, S.; Morokuma, K. J. Chem. Phys. 1996, 105, 1959.

    Google Scholar 

  27. Froese, R.D.J.; Morokuma, K. In Encyclopedia of Computational Chemistry; Schleyer, P. V. R., Ed.; Wiley: New York, 1998.

    Google Scholar 

  28. Dewar, M. J. S.; Zoebisch, E. G.; Healy, E. F.; Stewart, J. J. J. P. J. Amer. Chem. Soc. 1985, 107, 3902.

    Google Scholar 

  29. Swart, M.; Van Duijnen, P. Th.; DRF90 program, University of Groningen, Groningen, 2001.

    Google Scholar 

  30. Swart, M.; Van Duijnen, P. Th.; Snijders, J. G. J. Comp. Chem. 2001, 22, 79.

    Google Scholar 

  31. Clementi, E.; Corongiu, G. Methods and Techniques in Computational Chemistry, METECC–95; STEF: Cagliari, 1995.

    Google Scholar 

  32. ADF 2.3.3, Theoretical Chemistry; Vrije Universiteit: Amsterdam, 1997.

    Google Scholar 

  33. ADF 99, Theoretical Chemistry; Vrije Universiteit: Amsterdam, 1999.

    Google Scholar 

  34. Fonseca Guerra, C.; Snijders, J. G.; te Velde, G.; Baerents, E. J. Theoret. Chem. Account. 1998, 99, 391.

    Google Scholar 

  35. Vosko, S. H.; Wilk, L.; Nusair, M. Can. J. Phys. 1980, 58, 1200.

    Google Scholar 

  36. Van Duijnen, P. Th.; Swart, M. J. Phys. Chem. A 1998, 102, 2399.

    Google Scholar 

  37. Remko, M.; Lyne, P. D.; Richards, W. G. Phys. Chem. Chem. Phys. 1999, 1, 5353.

    Google Scholar 

  38. Dapprich, S.; Komaromi, I.; Byun, K. S.; Morokuma, K.; Frisch, M. J. J. Mol. Struct. Theochem. 1999, 461–462, 1.

    Google Scholar 

  39. Froese, R. D. J.; Morokuma, K. Chem. Phys. Lett. 1999, 305, 419.

    Google Scholar 

  40. Vreven, T.; Morokuma, K. J. Chem. Phys. 1999, 111, 8799.

    Google Scholar 

  41. Remko, M.; Lyne, P. D.; Richards, W. G. Phys. Chem. Chem. Phys. 2000, 2, 2511.

    Google Scholar 

  42. Roggero, I.; Civalleri, P. Ugliengo, P.; Chem. Phys. Lett. 2001, 341, 625.

    Google Scholar 

  43. Bondi, A. J. Phys. Chem. 1964, 68, 441.

    Google Scholar 

  44. Jackman, L. M.; Jen, T. J. Amer. Chem. Soc. 1975, 97, 2811.

    Google Scholar 

  45. De Jong, A. P.; van Dam, H. J. Med. Chem. 1980, 23, 889.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Milan Remko.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Remko, M., Van Duijnen, P.T. & Swart, M. Theoretical Study of Molecular Structure, Tautomerism, and Geometrical Isomerism of N-Methyl- and N-Phenyl-Substituted Cyclic Imidazolines, Oxazolines, and Thiazolines. Structural Chemistry 14, 271–278 (2003). https://doi.org/10.1023/A:1023811829286

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1023811829286

Navigation