Skip to main content
Log in

Level Dynamics and Universality of Spectral Fluctuations

  • Published:
Foundations of Physics Aims and scope Submit manuscript

Abstract

The spectral fluctuations of quantum (or wave) systems with a chaotic classical (or ray) limit are mostly universal and faithful to random-matrix theory. Taking up ideas of Pechukas and Yukawa we show that equilibrium statistical mechanics for the fictitious gas of particles associated with the parametric motion of levels yields spectral fluctuations of the random-matrix type. Previously known clues to that goal are an appropriate equilibrium ensemble and a certain ergodicity of level dynamics. We here complete the reasoning by establishing a power law for the ħ dependence of the mean parametric separation of avoided level crossings. Due to that law universal spectral fluctuations emerge as average behavior of a family of quantum dynamics drawn from a control parameter interval which becomes vanishingly small in the classical limit; the family thus corresponds to a single classical system. We also argue that classically integrable dynamics cannot produce universal spectral fluctuations since their level dynamics resembles a nearly ideal Pechukas–Yukawa gas.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

REFERENCES

  1. O. Bohigas, M. J. Giannoni, and C. Schmit, Phys. Rev. Lett. 52, 1 (1984).

    Google Scholar 

  2. M. V. Berry, Proc. R. Soc. London A 413, 183 (1985).

    Google Scholar 

  3. H.-J. Stöckmann, Quantum Chaos (Cambridge University Press, 1999) and references therein.

  4. F. Haake, Quantum Signatures of Chaos (Springer, Berlin, 1991; 2nd edn., 2000) and references therein.

    Google Scholar 

  5. M. L. Mehta, Random Matrices and the Statistical Theory of Energy Levels (Academic, New York, 1967; 2nd edn., 1991) and references therein.

    Google Scholar 

  6. E. Bogomolny, B. Georgeot, M. J. Giannoni, and C. Schmit, Phys. Rep. 291, 219 (1997).

    Google Scholar 

  7. J. P. Keating and F. Mezzadri, Nonlinearity 13, 747 (2000).

    Google Scholar 

  8. T. Yukawa, Phys. Rev. Lett. 54, 1883 (1985).

    Google Scholar 

  9. M. Wilkinson, J. Phys. A: Math. Gen. 21, 1173 (1988).

    Google Scholar 

  10. A. V. Andreev and B. L. Altshuler, Phys. Rev. Lett. 75, 902 (1995).

    Google Scholar 

  11. M. R. Zirnbauer, in Supersymmetry and Trace Formulae; Chaos and Disorder, I. V. Lerner, J. P. Keating, and D. E. Khmelnitskii, eds. (Kluwer Academic/Plenum, New York, 1999).

    Google Scholar 

  12. P. Pechukas, Phys. Rev. Lett. 51, 943 (1983).

    Google Scholar 

  13. F. Calogero and F. Marchioro, J. Math. Phys. 15, 1425 (1974). B. Sutherland, Phys. Rev. A 5, 1372 (1972). J. Moser, Adv. Math. 16, 1 (1975). S. Wojciechowski, Phys. Lett. A 111, 111 (1985).

    Google Scholar 

  14. B. Dietz and F. Haake, Europhys. Lett. 9, 1 (1989).

    Google Scholar 

  15. H. Lipkin, N. Meshkov, and A. J. Glick, Nucl. Phys. 62, 188 (1965). W. Wang, F. M. Izrailev, and G. Casati, Phys. Rev. E 57, 323 (1998) and references therein.

    Google Scholar 

  16. S. Gnutzmann, F. Haake, and M. Kuś, J. Phys. A 33, 143 (2000).

    Google Scholar 

  17. F. Haake and H.-J. Stöckmann, Physikalische Blätter 56, 6, 27 (2000).

    Google Scholar 

  18. E. B. Bogomolny, U. Gerland, and C. Schmit, Phys. Rev. E 59, R1315 (1999).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Braun, P., Gnutzmann, S., Haake, F. et al. Level Dynamics and Universality of Spectral Fluctuations. Foundations of Physics 31, 613–622 (2001). https://doi.org/10.1023/A:1017564909177

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1017564909177

Keywords

Navigation