Skip to main content
Log in

Influence of Abscisic Acid and the Abscisic Acid Biosynthesis Inhibitor, Norflurazon, on Interactions Between Phytophthora sojae and Soybean (Glycine max)

  • Published:
European Journal of Plant Pathology Aims and scope Submit manuscript

Abstract

A comparison was made of the effects of abscisic acid (ABA) and the ABA biosynthesis inhibitor, norflurazon on the interaction between soybean leaves and Phytophthora sojae. Inoculation of leaves of cv. Harosoy resulted in a compatible interaction typified by the presence of spreading, water soaked lesions with ill-defined margins while inoculation of cv. Haro 1272 resulted in an incompatible interaction with lesions restricted to the inoculation site. Activity of phenylalanine ammonia lyase (PAL) slowly increased in the compatible interaction but in the incompatible interaction there was a rapid rise in activity within 8 h after inoculation. When Haro 1272 plants were treated with ABA the normally incompatible interaction with race 1 was changed to what resembled a compatible interaction and activity of PAL was reduced to control levels. There was no visible effect on the compatible combination. In contrast when plants of cv. Harosoy were treated with norflurazon the normally compatible interaction with race 1 was changed to that which resembled an incompatible interaction and PAL activity increased to high levels rapidly. There was no effect of norflurazon on the incompatible interaction of cv. Haro 1272 with race 1. Stomata on leaves of cv. Harosoy treated with norflurazon closed within 2 h of inoculation resembling the response of stomata in normal incompatible interactions but not compatible interactions where stomata remained open. On leaves of cv. Harosoy treated with norflurazon at sites 3 and 20 mm from the inoculation point stomata also closed. These results extend and confirm the idea that ABA is a molecule that may regulate the outcome of the interaction between soybeans and P. sojae.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Anderson MD, Prasad TK, Martin BA and Stewart CR (1994) Differential gene expression in chilling acclimated maize seedlings and evidence for the involvement of abscisic acid in chilling tolerance. Plant Physiol 105: 331-339

    Google Scholar 

  • Bartels PG and Watson CW (1978) Inhibition of carotenoid synthesis by fluridone and norflurazon. Weed Sci 26: 198-203

    Google Scholar 

  • Belefant-Miller H, Fong F and Smith JD (1994) Abscisic acid biosynthesis during corn embryo development. Planta 195: 17-21

    Google Scholar 

  • Cahill DM and Ward EWB (1989a) Rapid localised changes in abscisic acid concentrations in soybean in interactions with Phytophthora megasperma f.sp. glycinea or after treatment with elicitors. Physiol Mol Plant Pathol 35: 483-493

    Google Scholar 

  • Cahill DM and Ward EWB (1989b) An indirect enzyme linked immunosorbent assay for measurement of abscisic acid in soybeans inoculated with Phytophthora megasperma f.sp. glycinea. Phytopathology 79: 1238-1242

    Google Scholar 

  • Cahill DM, Morris PF and Ward EWB (1993) Influence of metalaxyl on abscisic acid levels in soybean hypocotyls infected with Phytophthora sojae. Physiol Mol Plant Pathol 42: 109-121

    Google Scholar 

  • Cahill DM and McComb (1992) A comparison of changes in phenylalanine ammonia-lyase activity, lignin and phenolic synthesis in the roots of Eucalyptus calophylla (field resistance) and E. marginata (susceptible) when infected with Phytophthora cinnamomi. Physiol Mol Plant Pathol 40: 315-332

    Google Scholar 

  • Chandler PM and Robertson M (1994) Gene expression regulated by abscisic acid and its relation to stress tolerance. Annu Rev Plant Physiol Plant Mol Biol 45: 113-141

    Google Scholar 

  • Davidse LC (1984) Antifungal activity of acylalinine fungicides and related chloracetanilide herbicides. In Trinci APJ and Ryley JF (eds) Mode of Action of Antifungal Agents. Cambridge University Press (pp 121-134)

  • Dunn RM, Hedden P and Bailey JA (1990) A physiologically-induced resistance of Phaseolus vulgaris to a compatible race of Colletotrichum lindemuthianum is associated with increases in ABA content. Physiol Mol Plant Pathol 36: 339-349

    Google Scholar 

  • Graham MY and Graham TL (1996) Signaling in soybean phenylpropanoid responses. Dissection of primary, secondary, and conditioning effects of light,wounding, and elicitor treatments. Plant Physiol 110: 1123-1133

    Google Scholar 

  • Henfling JWDM, Bostock R and Kuc J (1980) Effect of abscisic acid on rishitin and lubimin accumulation and resistance to Phytophthora infestans and Cladosporium cucumerinum in potato tuber tissue slices. Phytopathology 70: 1074-1078

    Google Scholar 

  • Kim K-S, Davelaar E and De Klerk G-J (1994) Abscisic acid controls dormancy development and bulb formation in lily plantlets regenerated in vitro. Physiol P1 90: 59-64

    Google Scholar 

  • Lazarovits G and Ward EWB (1982) Relationship between localised glyceollin accumulation and metalaxyl treatment in the control of Phytophthora rot in soybean hypocotyls. Phytopathology 72: 1217-1221

    Google Scholar 

  • McDonald KL and Cahill DM (1999) Evidence for a transmissible factor that causes rapid stomatal closure in soybean at sites adjacent to and remote from hypersensitive cell death induced by Phytophthora sojae. Physiol Mol Plant Pathol (in press)

  • Mersie W and Singh M (1987) Comparison of norflurazon absorption by excised roots of three plant species. Pest Biochem Physiol 28: 114-120

    Google Scholar 

  • Pagano EA, Benech-Arnold RL, Wawrzkiewicz M and Steinbach HS (1997) α-amylase activity in developing sorghum caryopses from sprouting resistant and susceptible varieties. The role of ABA and GAs on its regulation. Ann Bot 79: 13-17

    Google Scholar 

  • Popova LP and Riddle KA (1996) Development and accumulation of ABA in fluridone-treated and drought stressed Vicia faba plants under different light conditions. Physiol P1 98: 791-797

    Google Scholar 

  • Ryerson E, Li A, Young JP and Heath MC (1993) Changes in abscisic acid levels during the initial stages of host and non-host reactions to the rust fungus. Physiol Mol Plant Pathol 43: 265-273

    Google Scholar 

  • Salt SD, Tuzun S and Kuc J (1986) Effects of β-ionone and abscisic acid on the growth of tobacco and resistance to blue mold. Mimicry of effects of stem infection by Peronospora tabacina Adam. Physiol Mol Plant Pathol 28: 287-297

    Google Scholar 

  • Steinbach HS, Benech-Arnold RL and Sanchez RA (1997) Hormonal regulation of dormancy in developing sorghum seeds. Plant Physiol 113: 149-154

    Google Scholar 

  • Ward EWB, Cahill DM and Bhattacharyya MK (1989) Abscisic acid suppression of phenylalanine ammonia-lyase activity and mRNA, and resistance of soybeans to Phytophthora megasperma f.sp. glycinea. Plant Physiol 91: 23-27

    Google Scholar 

  • Wilkinson RE (1987) Reversal of norflurazon carotenogenesis inhibition by isomers. Pest Biochem Physiol 28: 381-388

    Google Scholar 

  • Willmer C and Fricker M (1996) Stomata. Chapman and Hall, London

    Google Scholar 

  • Wu YJ, Spollen WG, Sharp RE, Hetherington PR and Fry SC (1994) Root growth maintenance at low water potentials. Increased activity of xyloglucan endotransglycosylase and its possible regulation by abscisic acid. Plant Physiol 106: 607-615

    Google Scholar 

  • Xu NF and Bewley JD (1995) The role of abscisic acid in germination, storage protein synthesis and desiccation tolerance in alfalfa (Medico sativa L.) seeds, as shown by inhibition of its synthesis by fluridone during development. J Exp Bot 46: 687-694

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David M. Cahill.

Rights and permissions

Reprints and permissions

About this article

Cite this article

McDonald, K.L., Cahill, D.M. Influence of Abscisic Acid and the Abscisic Acid Biosynthesis Inhibitor, Norflurazon, on Interactions Between Phytophthora sojae and Soybean (Glycine max). European Journal of Plant Pathology 105, 651–658 (1999). https://doi.org/10.1023/A:1008705321113

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1023/A:1008705321113

Navigation