Hostname: page-component-76fb5796d-skm99 Total loading time: 0 Render date: 2024-04-25T19:25:12.464Z Has data issue: false hasContentIssue false

Handedness and corpus callosal morphology in Williams syndrome

Published online by Cambridge University Press:  11 February 2013

Marilee A. Martens*
Affiliation:
Ohio State University University of Melbourne
Sarah J. Wilson
Affiliation:
University of Melbourne
Jian Chen
Affiliation:
Monash University
Amanda G. Wood
Affiliation:
University of Birmingham
David C. Reutens
Affiliation:
University of Queensland
*
Address correspondence and reprint requests to: Marilee Martens, Department of Psychology, Ohio State University, 2012 Founders Hall, 1179 University Drive, Newark, OH 43055; E-mail: martens.22@osu.edu.

Abstract

Williams syndrome is a neurodevelopmental genetic disorder caused by a hemizygous deletion on chromosome 7q11.23, resulting in atypical brain structure and function, including abnormal morphology of the corpus callosum. An influence of handedness on the size of the corpus callosum has been observed in studies of typical individuals, but handedness has not been taken into account in studies of callosal morphology in Williams syndrome. We hypothesized that callosal area is smaller and the size of the splenium and isthmus is reduced in individuals with Williams syndrome compared to healthy controls, and examined age, sex, and handedness effects on corpus callosal area. Structural magnetic resonance imaging scans were obtained on 25 individuals with Williams syndrome (18 right-handed, 7 left-handed) and 25 matched controls. We found that callosal thickness was significantly reduced in the splenium of Williams syndrome individuals compared to controls. We also found novel evidence that the callosal area was smaller in left-handed participants with Williams syndrome than their right-handed counterparts, with opposite findings observed in the control group. This novel finding may be associated with LIM-kinase hemizygosity, a characteristic of Williams syndrome. The findings may have significant clinical implications in future explorations of the Williams syndrome cognitive phenotype.

Type
Regular Articles
Copyright
Copyright © Cambridge University Press 2013

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Adamson, C. L., Wood, A. G., Chen, J., Barton, S., Reutens, D. C., Pantelis, C., et al. (2011). Thickness profile generation for the corpus callosum using Laplace's equation. Human Brain Mapping, 32, 21312140.Google Scholar
Bishop, D. V. M. (1990). Handedness and developmental disorder. London: MacKeith Press.Google Scholar
Brock, J. (2007). Language abilities in Williams syndrome: A critical review. Development and Psychopathology, 19, 97127.Google Scholar
Bryden, M. P. (1982). Laterality: Functional asymmetry in the intact brain. New York: Academic Press.Google Scholar
Clarke, S., Kraftsik, R., Van Der Loos, H., & Innocenti, G. M. (1989). Forms and measures of adult developing human corpus callosum: Is there sexual dismorphism? Journal of Comparative Neurology, 280, 213230.CrossRefGoogle Scholar
Doron, K., & Gazzaniga, M. (2008). Neuroimaging techniques offer new perspectives on callosal transfer and interhemispheric communication. Cortex, 44, 10231029.Google Scholar
Doyle, T., Bellugi, U., Korenberg, J. R., & Graham, J. (2004). “Everybody in the world is my friend”: Hypersociability in young children with Williams syndrome. American Journal of Medical Genetics, 124A, 263273.Google Scholar
Driesen, N. R., & Raz, N. (1995). The influence of sex, age, and handedness on corpus callosum morphology: A meta-analysis. Psychobiology, 23, 240247.Google Scholar
Dykens, E. M. (2003). Anxiety, fears, and phobias in persons with Williams syndrome. Developmental Neuropsychology, 23, 291316.CrossRefGoogle ScholarPubMed
Einfeld, S. L., Tonge, B. J., & Rees, V. W. (2001). Longitudinal course of behavioral and emotional problems in Williams syndrome. American Journal on Mental Retardation, 106, 7381.Google Scholar
Ewart, A. K., Morris, C. A., Atkinson, D., Jin, W., Sternes, K., Spallone, P., et al. (1993). Hemizygosity at the elastin locus in a developmental disorder, Williams Syndrome. Nature Genetics, 5, 1116.Google Scholar
Farran, E. K. (2005). Perceptual grouping ability in Williams syndrome: Evidence for deviant patterns of performance. Neuropsychologia, 43, 815822.Google Scholar
Farran, E. K., & Jarrold, C. (2005). Evidence for unusual spatial location coding in Williams syndrome: An explanation for the local bias in visuo-spatial construction tasks? Brain and Cognition, 59, 159172.Google Scholar
Gérard-Desplanches, A., Deruelle, C., Stefanini, S., Ayoun, C., Volterra, V., Vicari, S., et al. (2006). Laterality in persons with intellectual disability II. Hand, foot, ear, and eye laterality in persons with Trisomy 21 and Williams–Beuren syndrome. Developmental Psychobiology, 48, 482491.Google Scholar
Giedd, J. N., Rumsey, J. M., Castellanos, F. X., Rajapakse, J. C., Kaysen, D., Vaituzis, A. C., et al. (1996). A quantitative MRI study of the corpus callosum in children and adolescents. Developmental Brain Research, 91, 274280.Google Scholar
Gothelf, D., Searcy, Y. M., Reilly, J., Lai, P. T., Lanre-Amos, T., Mills, D., et al. (2008). Association between cerebral shape and social use of language in Williams syndrome. American Journal of Medical Genetics Part A, 146, 27532761.Google Scholar
Haas, B. W., Mills, D., Yam, A., Hoeft, F., Bellugi, U., & Reiss, A. (2009). Genetic influences on sociability: Heightened amygdala reactivity and event-related responses to positive social stimuli in Williams syndrome. Journal of Neuroscience, 29, 11321139.Google Scholar
Habib, M., Demonet, J. F., & Frackowiak, R. (1996). Cognitive neuroanatomy of language: Contribution of functional cerebral imaging. Revue Neurologique, 152, 249260.Google Scholar
Hines, M., Chiu, L., McAdams, L. A., Bentler, P. M., & Lipcamon, J. (1992). Cognition and the corpus callosum: Verbal fluency, visuospatial ability, and language lateralization related to midsagittal surface areas of callosal subregions. Behavioral Neuroscience, 106, 314.CrossRefGoogle ScholarPubMed
Holm, S. (1979). A simple sequentially rejective multiple test procedures. Scandinavian Journal of Statistics, 6, 6570.Google Scholar
Holmes, A., Blair, R., Watson, J., & Ford, I. (1996). Nonparametric analysis of statistic images from functional mapping experiments. Journal of Cerebral Blood Flow and Metabolism, 16, 722.Google Scholar
Järvinen-Pasley, A., Pollak, S. D., Yam, A., Hill, K. J., Grichanik, M., Mills, D., et al. (2010). Atypical hemispheric asymmetry in the perception of negative human vocalizations in individuals with Williams syndrome. Neuropsychologia, 48, 10471052.Google Scholar
Jernigan, T. L., Bellugi, U., Sowell, E., Doherty, S., & Hesselink, J. R. (1993). Cerebral morphologic distinctions between Williams and Down syndromes. Archives of Neurology, 50, 186191.Google Scholar
Levitin, D. J., Menon, V., Schmitt, J. E., Eliez, S., White, C. D., Glover, G. H., et al. (2003). Neural correlates of auditory perception in Williams syndrome: An fMRI study. NeuroImage, 18, 7482.Google Scholar
Luders, E., Di Paola, M., Tomaiuolo, F., Thompson, P. M., Toga, A. W., Vicari, S., et al. (2007). Callosal morphology in Williams syndrome: A new evaluation of shape and thickness. Clinical Neuroscience and Neuropathology, 18, 203207.Google Scholar
Luders, E., Narr, K. L., Bilder, R. M., Thompson, P. M., Szeszko, P. R., Hamilton, L., et al. (2007). Positive correlations between corpus callosum thickness and intelligence. NeuroImage, 37, 14571464.Google Scholar
Martens, M. A., Reutens, D. C., & Wilson, S. J. (2010). Auditory cortical volumes and musical ability in Williams syndrome. Neuropsychologia, 48, 26022609.Google Scholar
Martens, M. A., Wilson, S. J., Dudgeon, P., & Reutens, D. C. (2009). Approachability and the amygdala: Insights from Williams syndrome. Neuropsychologia, 47, 24462453.Google Scholar
Martens, M. A., Wilson, S. J., & Reutens, D. C. (2008). Research review: Williams syndrome: A critical review of the cognitive, behavioral, and neuroanatomical phenotype. Journal of Child Psychology and Psychiatry, 49, 576608.Google Scholar
Mervis, C. B., & Becerra, A. M. (2007). Language and communicative development in Williams syndrome. Mental Retardation and Developmental Disabilities Research Reviews, 13, 315.Google Scholar
Mervis, C. B., & Klein-Tasman, B. P. (2000). Williams syndrome: Cognition, personality, and adaptive behavior. Mental Retardation and Developmental Disabilities Research Reviews, 6, 148158.Google Scholar
Meyer-Lindenberg, A., Hariri, A. R., Munoz, K. E., Mervis, C. B., Mattay, V. S., Morris, C. A., et al. (2005). Neural correlates of genetically abnormal social cognition in Williams syndrome. Nature Neuroscience, 8, 991993.Google Scholar
Meyer-Lindenberg, A., Mervis, C. B., Sarpal, D., Koch, P., Steele, S., Kohn, P., et al. (2005). Functional, structural, and metabolic abnormalities of the hippocampal formation in Williams syndrome. Journal of Clinical Investigation, 115, 18881895.Google Scholar
Mulligan, J., Stratford, R. J., Bailey, B. J. R., McCaughey, E. S., & Betts, P. R. (2001). Hormones and handedness. Hormone Research, 56, 5157.Google Scholar
O'Hearn, K., & Landau, B. (2007). Mathematical skill in individuals with Williams syndrome: Evidence from a standardized mathematics battery. Brain and Cognition, 64, 238246.Google Scholar
Oldfield, R. C. (1971). The assessment and analysis of handedness: The Edinburgh Inventory. Neuropsychologia, 9, 97113.Google Scholar
Otsu, N. (1979). A threshold selection method from gray-level histograms. IEE Transactions on Systems, Man, and Cybernetics, 9, 6266.Google Scholar
Paul, L. K. (2010). Developmental malformation of the corpus callosum: A review of typical callosal development and examples of developmental disorders with callosal involvement. Journal of Neurodevelopmental Disorders, 3, 327.Google Scholar
Pober, B. R. (2010). Williams–Beuren syndrome. New England Journal of Medicine, 362, 239252.Google Scholar
Porter, M. A., & Coltheart, M. (2006). Global and local processing in Williams syndrome, autism, and Down syndrome: Perception, attention, and construction. Developmental Neuropsychology, 30, 771789.Google Scholar
Reiss, A. L., Eckert, M. A., Rose, F., Karchemskiy, A., Kesler, S., Chang, M., et al. (2004). An experiment of nature: Brain anatomy parallels cognition and behavior in Williams syndrome. Journal of Neuroscience, 24, 50095015.Google Scholar
Reiss, A. L., Eliez, S., Schmitt, J. E., Straus, E., Lai, Z., Jones, W., et al. (2000). Neuroanatomy of Williams syndrome: A high-resolution MRI study. Journal of Cognitive Neuroscience, 12, 6573.Google Scholar
Rosner, B. A., Hodapp, R. M., Fidler, D. J., Sagun, J. N., & Dykens, E. M. (2004). Social competence in persons with Prader–Willi, Williams and Down's syndromes. Journal of Applied Research in Intellectual Disabilities, 17, 209217.Google Scholar
Roubertoux, P. L., Bichler, Z., Pinoteau, W., Seregaza, Z., Fortes, S., Jamon, M., et al. (2005). Functional analysis of genes implicated in Down syndrome: 2. Laterality and corpus callosum size in mice transpolygenic for Down syndrome chromosomal region-1 (DCR-1). Behavior Genetics, 35, 333341.Google Scholar
Ryberg, C., Stegmann, M., Sjostrand, K., Rostrup, E., Barkhof, F., Fazekas, F., et al. (2006). Corpus callosum partitioning schemes and their effect on callosal morphometry. Paper presented at the International Society of Magnetic Resonance in Medicine Conference, Seattle, WA.Google Scholar
Schmitt, J. E., Eliez, S., Bellugi, U., & Reiss, A. L. (2001). Analysis of cerebral shape in Williams syndrome. Archives of Neurology, 58, 283287.Google Scholar
Schmitt, J. E., Eliez, S., Warsofsky, I. S., Bellugi, U., & Reiss, A. L. (2001). Corpus callosum morphology of Williams syndrome: Relation to genetics and behavior. Developmental Medicine and Child Neurology, 43, 155159.Google Scholar
Schubert, C. (2009). The genomic basis of the Williams–Beuren syndrome. Cellular and Molecular Life Sciences, 66, 11781197.Google Scholar
Shibazaki, Y., Shimizu, M., & Kuroda, R. (2004). Body handedness is directed by genetically determined cytoskeletal dynamics in the early embryo. Current Biology, 14, 14621467.Google Scholar
Tomaiuolo, F., Di Paola, M., Caravale, B., Vicari, S., Petrides, M., & Caltagiorne, C. (2002). Morphology and morphometry of the corpus callosum in Williams syndrome: A T1-weighted MRI study. NeuroReport, 13, 22812284.Google Scholar
van Strien, J. W., Lagers-van Haselen, G. C., van Hagen, J. M., de Coo, I. F. M., Frens, M. A., & van der Geest, J. N. (2005). Increased prevalences of left-handedness and left-eye sighting dominance in individuals with Williams–Beuren syndrome. Journal of Clinical and Experimental Neuropsychology, 27, 967976.CrossRefGoogle ScholarPubMed
Walterfang, M., Wood, A., Reutens, D., Wood, S., Chen, J., Velakoulis, D., et al. (2008). Morphology of the corpus callosum at different stages of schizophrenia: Cross-sectional study in first-episode and chronic illness. British Journal of Psychiatry, 192, 429434.Google Scholar
Wang, P. P., Doherty, S., Hesselink, J. R., & Bellugi, U. (1992). Callosal morphology concurs with neurobehavioral and neuropathological findings in two neurodevelopmental disorders. Archives of Neurology, 49, 407411.Google Scholar
Witelson, S. F. (1985). The brain connection: The corpus callosum is larger in left-handers. Science, 229, 665668.CrossRefGoogle ScholarPubMed
Witelson, S. F. (1989). Hand and sex differences in the isthmus and genu of the human corpus callosum. Brain, 112, 799835.Google Scholar
Witelson, S. F., & Pallie, W. (1973). Left hemisphere specialization for language in the newborn: Neuroanatomical evidence of asymmetry. Brain, 96, 641646.Google Scholar
Woods, R. P. (1996). Correlation of brain structure and function. In Toga, A. W. & Mazziotta, J. C. (Eds.), Brain mapping: The methods (pp. 313341). San Diego, CA: Academic Press.Google Scholar
Woods, R. P., Grafton, S. T., Watson, G. J. D., Sicotte, N. L., & Mazziotta, J. C. (1998). Automated image registration: II. Intersubject validation of linear and nonlinear models. Journal of Computer Assisted Tomography, 22, 153165.Google Scholar