Skip to main content
Log in

Synthesis and characterizations of MIL-140B-Al2O3/YSZ ceramic membrane using solvothermal method for seawater desalination

  • Research
  • Published:
Journal of the Australian Ceramic Society Aims and scope Submit manuscript

Abstract

Membranes for desalination using forward osmosis (FO) should be stable and ordered, with high water flux and low reverse solute flux performances. In this study, metal-organic framework (MOF) was embedded on a ceramic membrane surface in order to make it feasible to be used in FO process. Two-stage preparation steps were taken involving sol-gel Pechini’s method for membrane surface modification, followed by solvothermal synthesis to finally deposit the MIL-140B (MOF) on the membrane’s surface. 1D structure of our MOF (MIL-140B) was observed using field-emission scanning electron microscopy (FE-SEM) and its unaffected crystallinity was proved using X-ray diffraction (XRD) regardless of changes in the study parameters (reactant concentration and time of synthesis). Brunauer-Emmett-Teller (BET) conducted in this study displayed type IV isotherm pattern with hysteresis loop which signify MIL-140B as a mesoporous particle. The final performance results concluded that 0.3 M reactant concentration under 16 h synthesis time was the best preparation condition since sample D gave excellent water flux (12.023 L/m2 h) and showed remarkable drop in the reverse solute flux (0.094 L/m2 h) performances. These results indicate a potential of high FO membrane efficiency as comparable to the best in the literature.

.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Explore related subjects

Discover the latest articles and news from researchers in related subjects, suggested using machine learning.

References

  1. Liu, X., Demir, N.K., Wu, Z., Li, K.: Highly water-stable zirconium metal-organic framework UiO-66 membranes supported on alumina hollow fibers for desalination. J. Am. Chem. Soc.137(22), 6999–7002 (2015)

    Article  CAS  Google Scholar 

  2. Rowsell, J.L.C., Yaghi, O.M.: Metal – organic frameworks : a new class of porous materials. 73, 3–14 (2004)

  3. Trapani, F., Polyzoidis, A., Loebbecke, S., Piscopo, C.G.: On the general water harvesting capability of metal-organic frameworks under well-defined climatic conditions. Microporous Mesoporous Mater.230, 20–24 (2016)

    Article  CAS  Google Scholar 

  4. Qiu, S., Xue, M., Zhu, G.: Metal-organic framework membranes: from synthesis to separation application. Chem. Soc. Rev.43, 6116–6140 (2014)

    Article  CAS  Google Scholar 

  5. Fu, J., Das, S., Xing, G., Ben, T., Valtchev, V., Qiu, S.: Fabrication of COF-MOF composite membranes and their highly selective separation of H2/CO2. J. Am. Chem. Soc.138(24), 7673–7680 (2016)

    Article  CAS  Google Scholar 

  6. Guillerm, V., Ragon, F., Dan-Hardi, M., Devic, T., Vishnuvarthan, M., Campo, B., Vimont, A., Clet, G., Yang, Q., Maurin, G., Férey, G., Vittadini, A., Gross, S., Serre, C.: A series of isoreticular, highly stable, porous zirconium oxide based metal-organic frameworks. Angew. Chem. Int. Ed.51(37), 9267–9271 (2012)

    Article  CAS  Google Scholar 

  7. Yang, J., Ma, J.J., Zhang, D.M., Xue, T., Guan, Y.J.: Effect of organic moieties (phenyl, naphthalene, and biphenyl) in Zr-MIL-140 on the hydrogenation activity of Pd nanoparticles. Chin. Chem. Lett.27(11), 1679–1682 (2016)

    Article  CAS  Google Scholar 

  8. Lee, Y.R., Kim, J., Ahn, W.S.: Synthesis of metal-organic frameworks: a mini review. Korean J. Chem. Eng.30(9), 1667–1680 (2013)

    Article  CAS  Google Scholar 

  9. Van De Voorde, B., Borges, D., Vermoortele, F., Wouters, R., Bozbiyik, B., Denayer, J., Taulelle, F., Martineau, C., Serre, C., Maurin, G., De Vos, D.: Isolation of renewable phenolics by adsorption on ultrastable hydrophobic MIL-140 METAL – ORGANIC FRAMEWORKS. 140, 3159–3166 (2015)

  10. Gutov, O.V., Bury, W., Gomez-Gualdron, D.A., Krungleviciute, V., Fairen-Jimenez, D., Mondloch, J.E., Sarjeant, A.A., Al-Juaid, S.S., Snurr, R.Q., Hupp, J.T., Yildirim, T., Farha, O.K.: Water-stable zirconium-based metal organic framework material with high-surface area and gas-storage capacities. Chem. - A Eur. J.20(39), 12389–12393 (2014)

    Article  CAS  Google Scholar 

  11. Liang, W., Babarao, R., D’Alessandro, D.M.: Microwave-assisted solvothermal synthesis and optical properties of tagged MIL-140A metal-organic frameworks. Inorg. Chem.52(22), 12878–12880 (2013)

    Article  CAS  Google Scholar 

  12. Ma, S.Q., Wang, X.S., Collier, C.D., Manis, E.S., Zhou, H.C.: Ultramicroporous metal-organic framework based on 9,10-anthracenedicarboxylate for selective gas adsorption. Inorg. Chem.46(21), 8499–8501 (2007)

    Article  CAS  Google Scholar 

  13. Liang, W., D’Alessandro, D.M.: Microwave-assisted solvothermal synthesis of zirconium oxide based metal-organic frameworks. Chem. Commun.49(35), 3706–37088 (2013)

    Article  CAS  Google Scholar 

  14. Glater, J., Hong, S., Elimelech, M.: The search for a chlorine-resistant reverse osmosis membrane. 95, 325–345 (1994)

  15. El-saied, H., Basta, A.H., Barsou, B.N., Elberry, M.M.: Cellulose membranes for reverse osmosis Part I . RO cellulose acetate membranes including a composite with polypropylene. 159, (2003)

  16. Zhu, Y., Gupta, K.M., Liu, Q., Jiang, J., Caro, J., Huang, A.: Synthesis and seawater desalination of molecular sieving zeolitic imidazolate framework membranes. DES. 385, 75–82 (2016)

    Article  CAS  Google Scholar 

  17. Zirehpour, A., Rahimpour, A., Ulbricht, M.: Nano-sized metal organic framework to improve the structural properties and desalination performance of thin film composite forward osmosis membrane. J. Memb. Sci.531, 59–67 (2017)

    Article  CAS  Google Scholar 

  18. Zirehpour, A., Rahimpour, A., Khoshhal, S., Firouzjaei, M.D., Ghoreyshi, A.A.: The impact of MOF feasibility to improve the desalination performance and antifouling properties of FO membranes. RSC Adv.6(74), 70174–70185 (2016)

    Article  CAS  Google Scholar 

  19. Lee, J.-Y., She, Q., Huo, F., Tang, C.Y.: Metal-organic framework – based porous matrix membranes for improving mass transfer in forward osmosis membranes. J. Membr. Sci.492, 392–399 (2015)

    Article  CAS  Google Scholar 

  20. C. Dey and T. Kundu, “Crystalline metal-organic frameworks (MOFs): synthesis, structure and function,” pp. 3–10, 2014.

  21. Agoudjil, N., Kermadi, S., Larbot, A.: Synthesis of inorganic membrane by sol–gel process. 223, 417–424 (2008)

  22. Li, W., Zhang, Y., Li, Q., Zhang, G.: Metal-organic framework composite membranes: Synthesis and separation applications. Chem. Eng. Sci.135, 232–257 (2015)

    Article  CAS  Google Scholar 

  23. Rahman, M.A., Ha, M., Othman, D., Ismail, A.F.: Morphological study of yttria-stabilized zirconia hollow fibre membrane prepared using phase inversion / sintering technique. 41, 12543–12553 (2015)

  24. Zhang, X., Liu, Y., Kong, L., Liu, H., Qiu, J., Han, W., Weng, L., Yeung, K.L., Zhu, W.: A simple and scalable method for preparing low-defect ZIF-8 tubular membranes. J. Mater. Chem.1, 10635–10638

    Article  CAS  Google Scholar 

  25. Kandiah, M., Nilsen, M.H., Usseglio, S., Jakobsen, S., Olsbye, U., Tilset, M., Larabi, C., Quadrelli, E.A., Bonino, F., Lillerud, K.P., Lyon, D.: Synthesis and stability of tagged UiO-66 Zr-MOFs. 10, 6632–6640 (2010)

  26. Burtch, N.C., Jasuja, H., Walton, K.S.: Water stability and adsorption in metal − organic frameworks. Chem. Rev.114(20), 10575–10612 (2014)

    Article  CAS  Google Scholar 

  27. Mu, N., Abdullah, N., Zahir, M., Pauzi, M., Rahman, M.A., Abas, K.H., Aziz, A.A., Hafiz, M., Othman, D., Jaafar, J., Ismail, A.F.: Synthesis and performance evaluation of zeolitic imidazolate framework-8 membranes deposited onto alumina hollow fiber for desalination. 36, 3, 439–449 (2019)

  28. Liang, W., et al.: Tuning the cavities of zirconium-based MIL-140 frameworks to modulate CO2 adsorption. Chem. Commun.51(56), 11286–11289 (2015)

    Article  CAS  Google Scholar 

  29. Li, P., Chen, J., Zhang, J., Wang, X., Li, P., Chen, J., Zhang, J., Wang, X.: Water stability and competition effects toward CO2 adsorption on metal organic frameworks water stability and competition effects toward CO2 adsorption on metal organic frameworks. 2119, (2015)

  30. V. V Butova, A. P. Budnyk, A. A. Guda, K. A. Lomachenko, A. L. Bugaev, A. V Soldatov, S. M. Chavan, and S. Øien-ødegaard, “Modulator effect in UiO-66-NDC ( 1 , 4-naphthalenedicarboxylic acid ) synthesis and comparison with UiO-67-NDC isoreticular metal − organic frameworks,” no. 2017

  31. Pure, U.O.F.: Provisional International Union Of Pure and Applied Chemistry Commission On Colloid and Surface Chemistry Subcommittee on Reporting Gas Adsorption Data * Reporting Physisorption Data For Gas / Solid Systems with Special Reference to the Determination of S. 54(11), (1982)

  32. M. Thommes, K. Kaneko, A. V Neimark, J. P. Olivier, F. Rodriguez-reinoso, J. Rouquerol, and K. S. W. Sing, “Physisorption of gases, with special reference to the evaluation of surface area and pore size distribution (IUPAC Technical Report),” 2015

  33. Salvador, F., Salvador, A.: A review of the application of the BET equation to experimental data: the C parameter. Stud. Surf. Sci. Catal.144, 379–386 (2002)

    Article  CAS  Google Scholar 

  34. Li, X., Zhao, C., Yang, M., Yang, B., Hou, D., Wang, T.: Reduced graphene oxide-NH2 modified low pressure nanofiltration composite hollow fiber membranes with improved water flux and antifouling capabilities. Appl. Surf. Sci.419, 418–428 (2017)

    Article  CAS  Google Scholar 

  35. P. Sukitpaneenit and T. Chung, “High performance thin-film composite forward osmosis hollow fiber membranes with macrovoid-free and highly porous structure for sustainable water production,” 2012

  36. Phillip, W.A., Yong, J.U.I.S., Elimelech, M.: Reverse draw solute permeation in forward osmosis : modeling and experiments. 44(13), 5170–5176 (2010)

  37. Cath, T.Y.: Solute coupled diffusion in osmotically driven membrane processes. 43(17), 6769–6775 (2009)

  38. She, Q., Jin, X., Tang, C.Y.: Osmotic power production from salinity gradient resource by pressure retarded osmosis : Effects of operating conditions and reverse solute diffusion. J. Membr. Sci.401–402, 262–273 (2012)

    Article  Google Scholar 

  39. Fang, W., Liu, C., Shi, L., Wang, R.: Composite forward osmosis hollow fiber membranes: Integration of RO- and NF-like selective layers for enhanced organic fouling resistance. J. Membr. Sci.492, 147–155 (2015)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge the financial support from various parties, namely, the Islamic Educational, Scientific and Cultural Organization (ISESCO) (R.J130000.7351.4B368) Malaysia Ministry of Higher Education (MOHE) through FRGS (0.J130000.7823.4F947), the Higher Institution Centre of Excellence (HICoE) Research Grant (R.J090301.7846.4 J176), and Universiti Teknologi Malaysia (UTM) through the Research University grant (Q.J130000.2446.04G30, Q.J130000.3551.05G77, Q.J130000.2523.19H79). Appreciation also goes to UTM Research Management Centre for both financial and technical supports.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mukhlis A. Rahman.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yahaya, N.Z.S., Paiman, S.H., Abdullah, N. et al. Synthesis and characterizations of MIL-140B-Al2O3/YSZ ceramic membrane using solvothermal method for seawater desalination. J Aust Ceram Soc 56, 291–300 (2020). https://doi.org/10.1007/s41779-019-00435-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s41779-019-00435-2

Keywords