Skip to main content
Log in

Performance Evaluation and Calibration of Gantry-Tau Parallel Mechanism

  • Research Paper
  • Published:
Iranian Journal of Science and Technology, Transactions of Mechanical Engineering Aims and scope Submit manuscript

Abstract

The Gantry-Tau is a family of parallel manipulators with three linear actuators. This mechanism is of interest for various applications because of the large workspace and its performance in terms of high acceleration, precision, and stiffness characteristics. This paper presents workspace analysis and calibration for a Gantry-Tau mechanism using its forward kinematics. The mathematical model of the systematic errors in the kinematics model of the manipulator is obtained. Analysis of the error is then performed to identify the parameters that have a dominant effect on the kinematics error and the regions of the workspace with a high error due to the calibration. Minimization of the mean square and mean absolute errors is employed for calibration through kinematics parameters. For demonstration purposes, a SimMechanics kinematic model of the mechanism is used and its calibration is performed over many sampled positions within the workspace borders of the robot. The result demonstrates that the kinematic error is significantly reduced after the calibration.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  • Arora R, Bera TK (2017) Physical model reduction of a parallel and hybrid manipulator using eigenvalue sensitivity method. Iran J Sci Technol Trans Mech Eng 42:1–11

    Google Scholar 

  • Cheng G, Li Y, Lodewijks G, Pang Y, Shan X (2016) Configuration and singularity analysis of a parallel hip joint simulator based on the forward kinematics. Appl Math Model 40:7281–7292

    Article  MathSciNet  Google Scholar 

  • Crothers P, Freeman P, Dressler I, Nilsson K, Robertsson A, Zulauf W (2009) Characterization of the Tau parallel kinematic machine for aerospace application. SAE Tech Pap 2:205–213

    Google Scholar 

  • Daney D (1999) Self calibration of Gough platform using leg mobility constraints. In: 10th World Congress of international federation for the theory of machines and mechanisms (IFToMM), pp 104–109

  • Daney D, Papegay Y, Madeline B (2005) Choosing measurement poses for robot calibration with the local convergence method and Tabu search. Int J Robot Res 24:501–518

    Article  Google Scholar 

  • Daney D, Emiris IZ, Papegay Y, Tsigaridas E, Merlet J-P (2006) Calibration of parallel robots: on the elimination of pose-dependent parameters. In: Proceedings of EuCoMes

  • Dressler I, Haage M, Nilsson K, Johansson R, Robertsson A, Brogårdh T (2007a) Configuration support and kinematics for a reconfigurable Gantry-Tau manipulator. In: Proceedings of 2007 IEEE International conference on robotics and automation (ICRA), pp 2957–2962

  • Dressler I, Robertsson A, Johansson R (2007b) Accuracy of kinematic and dynamic models of a Gantry-Tau parallel kinematic robot. In: Proceedings of 2007 IEEE international conference on robotics and automation (ICRA), pp 883–888

  • Dressler I, Brogårdh T, Anders R (2010) A kinematic error model for a parallel Gantry-Tau manipulator. In: Proceedings of 2010 IEEE international conference on robotics and automation (ICRA), pp 3709–3714

  • Ebrahimi S, Eshaghiyeh-Firoozabadi A (2016) Dynamic performance evaluation of serial and parallel RPR manipulators with flexible intermediate links. Iran J Sci Technol Trans Mech Eng 40:169–180

    Article  Google Scholar 

  • Greenway B (2000) Robot accuracy. Ind Robot 27:257–265

    Article  Google Scholar 

  • Harib K, Srinivasan K (2003) Kinematic and dynamic analysis of Stewart platform-based machine tool structures. Robotica 21:541–554

    Article  Google Scholar 

  • Hovland G, Choux M, Murray M, Brogårdh T (2007a) Benchmark of the 3-DOF Gantry-Tau parallel kinematic machine. In: 2007 IEEE International conference on robotics and automation (ICRA), pp 535–542

  • Hovland G, Murray M, Brogårdh T (2007b) Experimental verification of friction and dynamic models of a parallel kinematic machine. In: 2007 IEEE/ASME international conference on Advanced intelligent mechatronics, pp 1–6

  • Huang T, Hong Z, Mei J, Chetwynd DG (2006) Kinematic calibration of the 3-DOF module of a 5-DOF reconfigurable hybrid robot using a double-ball-bar system. In: 2006 IEEE/RSJ International conference on intelligent robots and systems (IROS), pp 508–512

  • Johannesson L, Berbyuk V, Brogårdh T (2003) Gantry-Tau—a new three degrees of freedom parallel kinematic robot. Proc Mekatronikmöte 2003:1–6

    Google Scholar 

  • Kong X, Gosselin CM (2007) Type synthesis of parallel mechanisms. Springer Publishing Company, Incorporated, Berlin

    MATH  Google Scholar 

  • Li T, Jiang J, Deng H (2017) Analysis of structural characteristics and mobility of planar generalized mechanisms. Iran J Sci Technol Trans Mech Eng 41:25–34

    Article  Google Scholar 

  • Mady K (2012) Error kinematic modeling and calibration of the 3-DOF Gantry-Tau parallel kinematic machine. Master Thesis. University of Agder

  • Merlet J-P (2001) Parallel robots. Springer, Berlin, p 74

    Google Scholar 

  • Merlet J-P (2006) Jacobian, manipulability, condition number, and accuracy of parallel robots. J Mech Des 128:199–206

    Article  Google Scholar 

  • Motta JM, de Carvalho GC, McMaster RS (2001) Robot calibration using a 3D vision-based measurement system with a single camera. Robot Comput Integr Manuf 17:487–497

    Article  Google Scholar 

  • Murray M, Hovland G, Brogårdh T (2006) Collision-free workspace design of the 5-axis Gantry-Tau parallel kinematic machine. In: 2006 IEEE/RSJ International conference on intelligent robots and systems (IROS), pp 2150–2155

  • Murray M, Hovland G, Brogårdh T (2008) Singularity free reconfiguration of the 5-DOF Gantry-Tau parallel kinematic machine. In: Proceedings of 2nd international workshop on fundamental issues and future research directions for parallel mechanisms and manipulators, pp 21–22

  • Patel Y, George P (2012) Parallel manipulators applications—a survey. Mod Mech Eng 2:57

    Article  Google Scholar 

  • Pedrammehr S (2012) Investigation of factors influential on the dynamic features of machine tools’ hexapod table. In: 2nd International conference on acoustics and vibration ISAV 2012, Tehran, Iran, Dec 26–27

  • Pedrammehr S, Mahboubkhah M, Khani N (2011a) Natural frequencies and mode shapes for vibrations of machine tools’ hexapod table. In: 1st International conference on acoustics and vibration ISAV 2011, Tehran, Iran, Dec 21–22

  • Pedrammehr S, Mahboubkhah M, Pakzad S (2011b) An improved solution to the inverse dynamics of the general Stewart platform. In: 2011 IEEE International conference on mechatronics (ICM), pp 392–397

  • Pedrammehr S, Mahboubkhah M, Khani N (2012) Improved dynamic equations for the generally configured Stewart platform manipulator. J Mech Sci Technol 26:711–721

    Article  Google Scholar 

  • Pedrammehr S, Mahboubkhah M, Khani N (2013) A study on vibration of Stewart platform-based machine tool table. Int J Adv Manuf Technol 65:991–1007

    Article  Google Scholar 

  • Pedrammehr S, Mahboubkhah M, Qazani MRC, Rahmani A, Pakzad S (2014) Forced vibration analysis of milling machines hexapod table under machining forces. Stroj Vestn J Mech Eng 60:158–171

    Article  Google Scholar 

  • Pedrammehr S, Qazani MRC, Abdi H, Nahavandi S (2016) Mathematical modelling of linear motion error for Hexarot parallel manipulators. Appl Math Model 40:942–954

    Article  MathSciNet  Google Scholar 

  • Pedrammehr S, Najdovski Z, Abdi H, Nahavandi S (2017) Design methodology for a Hexarot-based centrifugal high-G simulator. In: 2017 IEEE International conference on systems, man, and cybernetics SMC2017

  • Pedrammehr S, Danaei B, Abdi H, Masuleh MT, Nahavandi S (2018a) Dynamic analysis of Hexarot: axis symmetric parallel manipulator. Robotica 36:225–240

    Article  Google Scholar 

  • Pedrammehr S, Nahavandi S, Abdi H (2018b) Closed-form dynamics of Hexarot parallel manipulator by means of the principle of virtual work. Acta Mech Sin 34:883–895

    Article  MathSciNet  Google Scholar 

  • Pedrammehr S, Nahavandi S, Abdi H (2018c) Evaluation of inverse dynamics of Hexarot-based centrifugal simulators. Int J Dyn Control 6:1505–1515. https://doi.org/10.1007/s40435-018-0421-3

    Article  MathSciNet  Google Scholar 

  • Pedrammehr S, Qazani MRC, Nahavandi S (2018d) A novel axis symmetric parallel mechanism with coaxial actuated arms. In: 2018 4th International conference on control, automation and robotics (ICCAR). IEEE, pp 476–480

  • Pedrammehr S, Nahavandi S, Asadi H (2019a) The forced vibration analysis of hexarot parallel mechanisms. In: The 20th IEEE International conference on industrial technology IEEE-ICIT 2019, Melbourne, Australia, Feb 13–15

  • Pedrammehr S, Qazani MRC, Asadi H, Nahavandi S (2019b) Kinematic manipulability analysis of Hexarot simulators. In: The 20th IEEE International conference on industrial technology IEEE-ICIT 2019, Melbourne, Australia, Feb 13–15

  • Pedrammehr S, Qazani MRC, Asadi H, Nahavandi S (2019c) Control system development of a Hexarot-based high-G centrifugal simulator. In: The 20th IEEE International conference on industrial technology IEEE-ICIT 2019, Melbourne, Australia, Feb 13–15

  • Qazani MRC, Pedrammehr S, Nategh MJ (2014) A study on motion of machine tools’ hexapod table on freeform surfaces with circular interpolation. Int J Adv Manuf Technol 75:1763–1771

    Article  Google Scholar 

  • Qazani MRC, Pedrammehr S, Nategh MJ (2018) An investigation on the motion error of machine tools’ hexapod table. Int J Precis Eng Man 19:463–471. https://doi.org/10.1007/s12541-018-0056-5

    Article  Google Scholar 

  • Rahmani A, Ghanbari A, Pedrammehr S (2014) Kinematic analysis for hybrid 2-(6-UPU) manipulator by wavelet neural network. Adv Mater Res 1016:726–730

    Article  Google Scholar 

  • Renaud P, Andreff N, Lavest JM, Dhome M (2006) Simplifying the kinematic calibration of parallel mechanisms using vision-based metrology. IEEE Trans Robot 22:12–22

    Article  Google Scholar 

  • Ridgeway SC, Crane CD (2003) Optimized kinematics of a 6–6 parallel mechanism considering position and orientation errors. In: FCRAR

  • Tavolieri C, Ottaviano E, Ceccarelli M (2006) Pose determination for a rigid body by means of CaTraSys II (Cassino Tracking System). In: Proceedings of EuCoMeS, pp 21–26

  • Tyapin I, Hovland G, Brogårdh T (2007a) Workspace optimization of a reconfigurable parallel kinematic manipulator. In: 2007 IEEE/ASME International conference on advanced intelligent mechatronics, pp 1–6

  • Tyapin I, Hovland G, Brogårdh T (2007b) A fully geometric approach for the workspace area of the Gantry-Tau parallel kinematic manipulator. In: Proceedings of the 13th IASTED international conference on robotics and applications, pp 437–444

  • Visinsky ML, Cavallaro JR, Walker ID (1994) Robotic fault detection and fault tolerance: a survey. Reliab Eng Syst Saf 46:139–158

    Article  Google Scholar 

  • Williams I, Hovland G, Brogårdh T (2006) Kinematic error calibration of the Gantry-Tau parallel manipulator. In: Proceedings of 2006 IEEE international conference on robotics and automation (ICRA), pp 4199–4204

  • Yoosefi E, Rahmani Hanzaki A (2017) A singularity-free algorithm for dynamic modeling of spherical multibody systems. Iran J Sci Technol Trans Mech Eng 42:1–7

    Google Scholar 

  • Zhu Z, Li J, Gan Z, Zhang H (2005) Kinematic and dynamic modelling for real-time control of Tau parallel robot. Mech Mach Theory 40:1051–1067

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohammad Reza Chalak Qazani.

Appendix

Appendix

The geometric parameters of the Gantry-Tau manipulator:

The profile of the guideways is square with 110 mm length.

The length of the guideways:

$$l_{1k} ,l_{2k} ,l_{3k} = 3020\;{\text{mm}}$$

The profile of the links is circle with 25 mm radius.

The length of the links:

$$\left| {{\mathbf{l}}_{ik} } \right| = \, 2000\;{\text{mm}}$$

The start position of the guideways, \({\mathbf{a}}_{i}^{s}\) (mm):

$${\mathbf{a}}_{1}^{s} = \left[ {\begin{array}{*{20}c} 0 & { - 550} & {550} \\ \end{array} } \right]^{\text{T}} ;\quad {\mathbf{a}}_{2}^{s} = \left[ {\begin{array}{*{20}c} 0 & {550} & {550} \\ \end{array} } \right]^{\text{T}} ;\quad {\mathbf{a}}_{3}^{s} = \left[ {\begin{array}{*{20}c} 0 & { - 550} & { - 550} \\ \end{array} } \right]^{\text{T}}$$

The joint position of the carts, \({\mathbf{c}}_{ik}\) (mm):

$${\mathbf{c}}_{1\,\,1} = \left[ {\begin{array}{*{20}c} 0 & 0 & 0 \\ \end{array} } \right]^{\text{T}} ;\quad {\mathbf{c}}_{2\,\,1} = \left[ {\begin{array}{*{20}c} 0 & {0.143} & 0 \\ \end{array} } \right]^{\text{T}} ;\quad {\mathbf{c}}_{2\,\,2} = \left[ {\begin{array}{*{20}c} { - 0.124} & 0 & 0 \\ \end{array} } \right]^{\text{T}} ;$$
$${\mathbf{c}}_{3\,\,1} = \left[ {\begin{array}{*{20}c} 0 & {0.143} & 0 \\ \end{array} } \right]^{\text{T}} ;\quad {\mathbf{c}}_{3\,\,2} = \left[ {\begin{array}{*{20}c} { - 0.124} & { - 0.072} & 0 \\ \end{array} } \right]^{\text{T}} ;\quad {\mathbf{c}}_{3\,\,3} = \left[ {\begin{array}{*{20}c} {0.124} & { - 0.072} & 0 \\ \end{array} } \right]^{\text{T}}$$

The joint position of the platform, \({\mathbf{d}}_{ik}\) (mm):

$${\mathbf{d}}_{1\,\,1} = \left[ {\begin{array}{*{20}c} 0 & {127.01} & { - 15.19} \\ \end{array} } \right]^{\text{T}} ;\quad {\mathbf{d}}_{2\,\,1} = \left[ {\begin{array}{*{20}c} 0 & { - 124.99} & {59.81} \\ \end{array} } \right]^{\text{T}} ;\quad {\mathbf{d}}_{2\,\,2} = \left[ {\begin{array}{*{20}c} 0 & {127.01} & {59.81} \\ \end{array} } \right]^{\text{T}} ;$$
$${\mathbf{d}}_{3\,\,1} = \left[ {\begin{array}{*{20}c} {143.45} & {1.01} & {99.81} \\ \end{array} } \right]^{\text{T}} ;\quad {\mathbf{d}}_{3\,\,2} = \left[ {\begin{array}{*{20}c} 0 & { - 124.99} & { - 90.19} \\ \end{array} } \right]^{\text{T}} ;\quad {\mathbf{d}}_{3\,\,3} = \left[ {\begin{array}{*{20}c} 0 & {127.01} & { - 90.19} \\ \end{array} } \right]^{\text{T}} .$$

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chalak Qazani, M., Pedrammehr, S., Abdi, H. et al. Performance Evaluation and Calibration of Gantry-Tau Parallel Mechanism. Iran J Sci Technol Trans Mech Eng 44, 1013–1027 (2020). https://doi.org/10.1007/s40997-019-00322-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40997-019-00322-y

Keywords

Navigation