Skip to main content
Log in

An Effective Pulse-Shaping Technique for Testing Stainless Steel Alloys in a Split-Hopkinson Pressure Bar

  • Published:
Journal of Dynamic Behavior of Materials Aims and scope Submit manuscript

Abstract

Pulse shaping techniques are an integral component of designing and executing valid Split-hopkinson pressure bar (SHPB) experiments. Proper pulse shaping is vital for achieving stress equilibrium and a constant strain rate within the dynamically tested sample. A systematic method based on two-dimensional finite element (FE) analysis was developed to design an optimized single material pulse shaper for SHPB testing of two stainless steel alloys. The tested alloys exhibit high strain-hardening, but have significantly different mechanical properties: Lean Duplex Stainless Steel 2101 (LDSS 2101) and austenitic stainless steel 316L. Results show that pulse shapers made of LDSS 2101 are capable of satisfying stress equilibrium and constant strain rate conditions for the studied materials at different strain rates regimes. The outlined FE analysis workflow is an effective approach to define the optimal dimensions of pulse shapers without the need for costly pulse-shaper-development experimental trials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Ameri AAH, Escobedo-Diaz JP, Quadir MZ et al (2018) Strain rate effects on the mechanical response of duplex stainless steel. In: AIP conference proceedings, vol 1979, p 070001. https://doi.org/10.1063/1.5044810

  2. Lee W-S, Lin C-F, Chen T-H, Luo W-Z (2012) High temperature deformation and fracture behaviour of 316L stainless steel under high strain rate loading. J Nucl Mater 420:226–234. https://doi.org/10.1016/j.jnucmat.2011.10.005

    Article  Google Scholar 

  3. Liu Y, Yan H, Wang X, Yan M (2013) Effect of hot deformation mode on the microstructure evolution of lean duplex stainless steel 2101. Mater Sci Eng A 575:41–47. https://doi.org/10.1016/j.msea.2013.03.036

    Article  Google Scholar 

  4. Cheng M, Li C, Tang MX et al (2018) Intragranular void formation in shock-spalled tantalum: mechanisms and governing factors. Acta Mater 148:38–48. https://doi.org/10.1016/j.actamat.2018.01.029

    Article  Google Scholar 

  5. Talonen J, Nenonen P, Pape G, Hanninen H (2005) Effect of strain rate on the strain-induced martensite transformation and mechanical properties of austenitic stainless steels. Metall Mater Trans A 36A:421–432

    Article  Google Scholar 

  6. Gray G (2000) Classic split-hopkinson pressure bar testing. Mater Park OH ASM Int 2000 8:462–476. https://doi.org/10.1361/asmhba0003296

    Google Scholar 

  7. Gama B, Lopatnikov SL, Gillespie JW (2004) Hopkinson bar experimental technique: a critical review. Appl Mech Rev 57:223. https://doi.org/10.1115/1.1704626

    Article  Google Scholar 

  8. Meyers MA (1994) Dynamic behavior of materials. Wiley, New York

    Book  Google Scholar 

  9. Ramesh KT (2008) High strain rate and impact experiment. In: Handbook of experimental solid mechanics. Springer, New York, pp 929–960

    Chapter  Google Scholar 

  10. Bodelot L, Escobedo-Diaz JP, Trujillo CP et al (2015) Microstructural changes and in-situ observation of localization in OFHC copper under dynamic loading. Int J Plast 74:58–74. https://doi.org/10.1016/j.ijplas.2015.06.002

    Article  Google Scholar 

  11. Vecchio KS, Jiang F (2007) Improved pulse shaping to achieve constant strain rate and stress equilibrium in split-Hopkinson pressure bar testing. Metall Mater Trans A Phys Metall Mater Sci 38 A:2655–2665. https://doi.org/10.1007/s11661-007-9204-8

    Article  Google Scholar 

  12. Naghdabadi R, Ashrafi MJ, Arghavani J (2012) Experimental and numerical investigation of pulse-shaped split Hopkinson pressure bar test. Mater Sci Eng A 539:285–293. https://doi.org/10.1016/j.msea.2012.01.095

    Article  Google Scholar 

  13. Ellwood S, Griffiths LJ, Parry DJ (1982) Materials testing at high constant strain rates. J Phys E 15:280. https://doi.org/10.1088/0022-3735/15/3/009

    Article  Google Scholar 

  14. Nemat-nasser S, Choi JY, Guo W, Isaacs JB (2005) High strain-rate, small strain response of a NiTi shape-memory alloy. J Eng Mater Technol 127:83–89. https://doi.org/10.1115/1.1839215

    Article  Google Scholar 

  15. Frew DJ, Forrestal MJ, Chen W (2002) Pulse shaping techniques for testing brittle materials with a split Hopkinson pressure bar. Exp Mech 42:93–106. https://doi.org/10.1007/BF02428192

    Article  Google Scholar 

  16. Nemat-Nasser S, Choi JY, Guo WG, Isaacs JB (2005) Very high strain-rate response of a NiTi shape-memory alloy. Mech Mater 37:287–298. https://doi.org/10.1016/j.mechmat.2004.03.007

    Article  Google Scholar 

  17. Baranowski P, Malachowski J, Gieleta R, Damaziak K (2013) Numerical study for determination of pulse shaping design variables in SHPB apparatus. 61:459–466. https://doi.org/10.2478/bpasts-2013-0045

  18. Frew DJ, Forrestal MJ, Chen W (2005) Pulse shaping techniques for testing elastic-plastic materials with a split hopkinson pressure bar. Exp Mech 45:186–195. https://doi.org/10.1177/0014485105052111

    Article  Google Scholar 

  19. Cloete TJ, Paul G, Ismail EB (2014) Hopkinson bar techniques for the intermediate strain rate testing of bovine cortical bone subject areas. Philos Trans R Soc A 372:20130210. https://doi.org/10.1098/rsta.2013.0210

    Article  Google Scholar 

  20. Zhou Z, Li X, Liu A, Zou Y (2011) International Journal of Rock Mechanics & Mining Sciences Stress uniformity of split Hopkinson pressure bar under half-sine wave loads. Int J Rock Mech Min Sci 48:697–701. https://doi.org/10.1016/j.ijrmms.2010.09.006

    Article  Google Scholar 

  21. Chen W, Song B (2011) Split Hopkinson (Kolsky) bar design, testing and applications. Springer, New York

    Book  Google Scholar 

  22. Song B, Chen W, Antoun BR, Frew DJ (2007) Determination of early flow stress for ductile specimens at high strain rates by using a SHPB. Exp Mech 47:671–679. https://doi.org/10.1007/s11340-007-9048-6

    Article  Google Scholar 

  23. Song B, Connelly K, Korellis J et al (2009) Improved Kolsky-bar design for mechanical characterization of materials at high strain rates. Meas Sci Technol 20:115701. https://doi.org/10.1088/0957-0233/20/11/115701

    Article  Google Scholar 

  24. Ameri AAH, Elewa NN, Ashraf M, Escobedo-Diaz JP (2017) General methodology to estimate the dislocation density from microhardness measurements. Mater Charact 131:324–330. https://doi.org/10.1016/j.matchar.2017.06.031

    Article  Google Scholar 

  25. (2012) ANSYS mechanical APDL advanced analysis guide. Canonsburg, Technology Drive

  26. LS-DYNA L (2007) Keyword user’ S manual

  27. Zhao Z (1991) Shape design sensitivity analysis and optimization using the boundary element method. Springer, Berlin

    Book  Google Scholar 

  28. Johnson G, Cook WH (1983) A constitutive model and data for metals subjected to large strains, high strain rates and high temperatures. In: The 7th international symposium on ballistics. pp 541–547

  29. Samantaray D, Mandal S, Bhaduri AK (2009) A comparative study on Johnson Cook, modified Zerilli-Armstrong and Arrhenius-type constitutive models to predict elevated temperature flow behaviour in modified 9Cr-1Mo steel. Comput Mater Sci 47:568–576. https://doi.org/10.1016/j.commatsci.2009.09.025

    Article  Google Scholar 

  30. Ravichandran G, Subhash G (1994) Critical appraisal of limiting strain rates for compression testing of ceramics in a split hopkinson pressure bar. J Am Ceram Soc 77:263–267

    Article  Google Scholar 

  31. Baker WE (1996) A split hopkinson bar technique to evaluate the performance of accelerometers. J Appl Mech 63:353–356. https://doi.org/10.1115/1.2788872

    Article  Google Scholar 

Download references

Acknowledgements

Authors would like to thank Mr. Shameem Ahmed at the School of Engineering and Information Technology, UNSW Canberra for providing austenitic stainless steel material 316L. The authors would also like to acknowledge support by the Air Force Office of Scientific Research under Grant No. FA2386-17-1-4095.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. P. Escobedo-Diaz.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ameri, A.A.H., Brown, A.D., Ashraf, M. et al. An Effective Pulse-Shaping Technique for Testing Stainless Steel Alloys in a Split-Hopkinson Pressure Bar. J. dynamic behavior mater. 5, 39–50 (2019). https://doi.org/10.1007/s40870-019-00181-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40870-019-00181-3

Keywords

Navigation