Skip to main content
Log in

Fatigue life of machined components

  • Published:
Advances in Manufacturing Aims and scope Submit manuscript

Abstract

A correlation between machining process and fatigue strength of machined components clearly exists. However, a complete picture of the knowledge on this is not readily available for practical applications. This study addresses this issue by investigating the effects of machining methods on fatigue life of commonly used materials, such as titanium alloys, steel, aluminium alloys and nickel alloys from previous literature. Effects of turning, milling, grinding and different non-conventional machining processes on fatigue strength of above-mentioned materials have been investigated in detail with correlated information. It is found that the effect of materials is not significant except steel in which phase change causes volume expansion, resulting in compressive/tensile residual stresses based on the amounts of white layers. It is very complex to identify the influence of surface roughness on the fatigue strength of machined components in the presence of residual stresses. The polishing process improves the surface roughness, but removes the surface layers that contain compressive residual stresses to decrease the fatigue strength of polished specimens. The compressive and tensile residual stresses improve and reduce fatigue strength, respectively. Grinding process induces tensile residual stresses on the machined surfaces due to high temperature generation. On the other hand, milling and turning processes induce compressive residual stresses. High temperature non-conventional machining generates a network of micro-cracks on the surfaces in addition to tensile residual stresses to subsequently reduce fatigue strength of machined components. Embedded grits of abrasive water jet machining degrade the fatigue performance of components machined by this method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18

Similar content being viewed by others

References

  1. Bentley S, Mantle A, Aspinwall D (1999) The effect of machining on the fatigue strength of a gamma titanium aluminide intertmetallic alloy. Intermetallics 7(8):967–969

    Article  Google Scholar 

  2. Zhang LC, Kiat E, Pramanik A (2009) A briefing on the manufacture of hip joint prostheses. Adv Mater Res 76–78:212–216

    Article  Google Scholar 

  3. Pramanik A, Zhang LC, Chen YQ (2010) Efficient machining of artificial hip joint components. Adv Mater Res 97–101:2269–2272

    Article  Google Scholar 

  4. Zahavi E, Torbilo V, Press S (1996) Fatigue design: life expectancy of machine parts. CRC Press, Boca Raton

    Google Scholar 

  5. Javidi A, Rieger U, Eichlseder W (2008) The effect of machining on the surface integrity and fatigue life. Int J Fatigue 30(10):2050–2055

    Article  Google Scholar 

  6. Zlatin N, Field M (1973) Procedures and precautions in machining titanium alloys. In: titanium science and technology. Springer, New York, pp 489–504

  7. Novovic D, Dewes R, Aspinwall D et al (2004) The effect of machined topography and integrity on fatigue life. Int J Mach Tools Manuf 44(2):125–134

    Article  Google Scholar 

  8. Dieter GE (2015) Mechanical metallurgy. McGraw-Hill, New York

  9. Koster W, Field M (2001) Effects of machining variables on the surface and structural metals. In: proceedings of the North American manufacturing research conference, SME

  10. Mantle A, Aspinwall D (1997) Surface integrity and fatigue life of turned gamma titanium aluminide. J Mater Process Technol 72(3):413–420

    Article  Google Scholar 

  11. Taylor D, Clancy O (1991) The fatigue performance of machined surfaces. Fatigue Fract Eng Mater Struct 14(2–3):329–336

    Article  Google Scholar 

  12. Pramanik A, Littlefair G (2014) Developments in machining of stacked materials made of CFRP and titanium/aluminum alloys. Mach Sci Technol 18(4):485–508

    Article  Google Scholar 

  13. Pramanik A, Basak A, Islam MN (2015) Effect of reinforced particle size on wire EDM of MMCs. Int J Mach Mach Mater 17(2):139–149

    Google Scholar 

  14. Jha SK, Szczepanski CJ, Golden PJ et al (2012) Characterization of fatigue crack-initiation facets in relation to lifetime variability in Ti-6Al-4V. Int J Fatigue 42:248–257

    Article  Google Scholar 

  15. Zhang H (1995) Investigation of machinability of titanium aluminides. Dissertation. University of Birmingham, Birmingham

    Google Scholar 

  16. Xie Q, Bayoumi AE, Kendall LA et al (1989) A study on residual stresses and tool wear induced by machining processes. In: Proceedings of North American manufacturing research conference XVII

  17. Field M, Kahles JF, Cammett J (1972) Review of measuring methods for surface integrity. CIRP 21(2):219–238

    Google Scholar 

  18. Trail S, Bowen P (1995) Effects of stress concentrations on the fatigue life of a gamma-based titanium aluminide. Mater Sci Eng A 192:427–434

    Article  Google Scholar 

  19. Koster W, Field M (1973) Effect of machining variables on the surface and structural integrity of Ti. In: proceedings of the North American metal working research conference

  20. Klocke F, Welling D, Dieckmann J (2011) Comparison of grinding and wire EDM concerning fatigue strength and surface integrity of machined Ti6Al4V components. Procedia Eng 19:184–189

    Article  Google Scholar 

  21. Janeček M, Nový F, Stráský J et al (2011) Fatigue endurance of Ti-6Al-4V alloy with electro-eroded surface for improved bone in-growth. J Mech Behav Biomed Mater 4(3):417–422

    Article  Google Scholar 

  22. Mower TM (2014) Degradation of titanium 6Al-4V fatigue strength due to electrical discharge machining. Int J Fatigue 64:84–96

    Article  Google Scholar 

  23. Stráský J, Janeček M, Harcuba P et al (2011) The effect of microstructure on fatigue performance of Ti-6Al-4V alloy after EDM surface treatment for application in orthopaedics. J Mech Behav Biomed Mater 4(8):1955–1962

    Article  Google Scholar 

  24. Mueller J, Rack H, Wagner L (2007) Effects of supra-and sub-trans us heat treatments on fatigue performance of Ti-6Al-4V. In: Ti-2007 Sci Technol 383–386

  25. Leinenbach C, Eifler D (2006) Fatigue and cyclic deformation behaviour of surface-modified titanium alloys in simulated physiological media. Biomaterials 27(8):1200–1208

    Article  Google Scholar 

  26. Sharman A, Aspinwall D, Dewes R et al (2001) The effects of machined workpiece surface integrity on the fatigue life of γ-titanium aluminide. Int J Mach Tools Manuf 41(11):1681–1685

    Article  Google Scholar 

  27. Campbell J, Rao KV, Ritchie R (1997) On the role of microstructure in fatigue-crack growth of γ-based titanium aluminides. Mater Sci Eng A 239:722–728

    Article  Google Scholar 

  28. Murali MS, Yeo SH (2005) Process simulation and residual stress estimation of micro-electrodischarge machining using finite element method. Jpn J Appl Phys 44(7R):5254

    Article  Google Scholar 

  29. Stefanescu D, Truman C, Smith D et al (2006) Improvements in residual stress measurement by the incremental centre hole drilling technique. Exp Mech 46(4):417–427

    Article  Google Scholar 

  30. Hasçalık A, Çaydaş U (2007) Electrical discharge machining of titanium alloy (Ti-6Al-4V). Appl Surf Sci 253(22):9007–9016

    Article  Google Scholar 

  31. Yu JW, Xiao P, Liao YS et al (2009) Surface integrity in electrical discharge machining of Ti-6Al-4V. Adv Mater Res 76–78:613–617

  32. Aspinwall D, Soo S, Berrisford A et al (2008) Workpiece surface roughness and integrity after WEDM of Ti-6Al-4V and Inconel 718 using minimum damage generator technology. CIRP Ann-Manuf Technol 57(1):187–190

    Article  Google Scholar 

  33. Newman JC Jr, Phillips EP, Swain MH et al (1992) Fatigue mechanics: an assessment of a unified approach to life prediction. Int J Fatigue 15(1):68

  34. Pramanik A, Basak A, Islam MN et al (2015) Electrical discharge machining of 6061 aluminium alloy. Trans Nonferrous Met Soc China 25(9):2866–2874

    Article  Google Scholar 

  35. Golden PJ, John R, Porter Iii WJ (2010) Investigation of variability in fatigue crack nucleation and propagation in alpha + beta Ti-6Al-4V. Procedia Eng 2(1):1839–1847

    Article  Google Scholar 

  36. Kahles J, Field M (1967) Paper 4: surface integrity—a new requirement for surfaces generated by material-removal methods. doi:10.1243/PIME_CONF_1967_182_301_02

  37. Griffiths B (1987) Mechanisms of white layer generation with reference to machining and deformation processes. J Tribol 109(3):525–530

    Article  Google Scholar 

  38. Thiele JD, Melkote SN, Peascoe RA et al (1999) Effect of cutting-edge geometry and workpiece hardness on surface residual stresses in finish hard turning of AISI 52100 steel. J Manuf Sci Eng 122(4):642–649

    Article  Google Scholar 

  39. Abrāo AM, Aspinwall DK (1996) The surface integrity of turned and ground hardened bearing steel. Wear 196(1):279–284

    Article  Google Scholar 

  40. Sasahara H, Obikawa T, Shirakashi T (2004) Prediction model of surface residual stress within a machined surface by combining two orthogonal plane models. Int J Mach Tools Manuf 44(7–8):815–822

    Article  Google Scholar 

  41. Outeiro JC, Dias AM, Lebrun JL (2004) Experimental assessment of temperature distribution in three-dimensional cutting process. Mach Sci Technol 8(3):357–376

    Article  Google Scholar 

  42. Schwach DW, Guo YB (2006) A fundamental study on the impact of surface integrity by hard turning on rolling contact fatigue. Int J Fatigue 28(12):1838–1844

    Article  Google Scholar 

  43. Sasahara H (2005) The effect on fatigue life of residual stress and surface hardness resulting from different cutting conditions of 0.45% C steel. Int J Mach Tools Manuf 45(2):131–136

    Article  MathSciNet  Google Scholar 

  44. Abhang LB, Hameedullah M (2010) Chip-tool interface temperature prediction model for turning process. Int J Eng Sci Technol 2(4):382–393

    Google Scholar 

  45. García NV, Gonzalo O, Bengoetxea I (2012) Effect of cutting parameters in the surface residual stresses generated by turning in AISI 4340 steel. Int J Mach Tools Manuf 61:48–57

    Article  Google Scholar 

  46. Rech J, Moisan A (2003) Surface integrity in finish hard turning of case-hardened steels. Int J Mach Tools Manuf 43(5):543–550

    Article  Google Scholar 

  47. M’Saoubi R, Outeiro JC, Changeux B et al (1999) Residual stress analysis in orthogonal machining of standard and resulfurized AISI 316L steels. J Mater Process Technol 96(1–3):225–233

    Article  Google Scholar 

  48. Fetullazade E, Akyildiz HK, Saritas S (2010) Effects of the machining conditions on the strain hardening and the residual stresses at the roots of screw threads. Mater Des 31(4):2025–2031

    Article  Google Scholar 

  49. Field M (1971) Review of surface integrity of machined components. Ann CIRP 20(2):153–163

    Google Scholar 

  50. Akyildiz HK, Livatyali H (2010) Effects of machining parameters on fatigue behavior of machined threaded test specimens. Mater Des 31(2):1015–1022

    Article  Google Scholar 

  51. Arola D, Williams CL (2002) Estimating the fatigue stress concentration factor of machined surfaces. Int J Fatigue 24(9):923–930

    Article  Google Scholar 

  52. Dahlman P, Gunnberg F, Jacobson M (2004) The influence of rake angle, cutting feed and cutting depth on residual stresses in hard turning. J Mater Process Technol 147(2):181–184

    Article  Google Scholar 

  53. Smith S, Melkote SN, Lara-Curzio E et al (2007) Effect of surface integrity of hard turned AISI 52100 steel on fatigue performance. Mater Sci Eng A 459(1):337–346

    Article  Google Scholar 

  54. Matsumoto Y, Hashimoto F, Lahoti G (1999) Surface Integrity generated by precision hard turning. CIRP Ann Manuf Technol 48(1):59–62

    Article  Google Scholar 

  55. Hashimoto F, Guo YB, Warren AW (2006) Surface Integrity difference between hard turned and ground surfaces and its impact on fatigue life. CIRP Ann Manuf Technol 55(1):81–84

    Article  Google Scholar 

  56. Guo YB, Yen DW (2004) Hard turning versus grinding—the effect of process—induced residual stress on rolling contact. Wear 256(3–4):393–399

    Article  Google Scholar 

  57. Matsumoto Y, Magda D, Hoeppner DW et al (1991) Effect of machining processes on the fatigue strength of hardened AISI 4340 steel. J Manuf Sci Eng 113(2):154–159

    Google Scholar 

  58. Matsumoto Y, Barash MM, Liu CR (1986) Effect of hardness on the surface integrity of AISI 4340 steel. J Manuf Sci Eng 108(3):169–175

    Google Scholar 

  59. Pramanik A (2016) Electrical discharge machining of MMCs reinforced with very small particles. Mater Manuf Process 31(4):397–404

    Article  Google Scholar 

  60. Ghanem F, Sidhom H, Braham C et al (2002) Effect of near-surface residual stress and microstructure modification from machining on the fatigue endurance of a tool steel. J Mater Eng Perform 11(6):631–639

    Article  Google Scholar 

  61. Pramanik A, Littlefair G (2015) Machining of titanium alloy (Ti-6Al-4V)—theory to application. Mach Sci Technol 19(1):1–49

    Article  Google Scholar 

  62. Ghanem F, Braham C, Sidhom H (2003) Influence of steel type on electrical discharge machined surface integrity. J Mater Process Technol 142(1):163–173

    Article  Google Scholar 

  63. Mamalis AG, Vosniakos GC, Vaxevanidis NM (1987) On the surface integrity of mechanically and thermally worked metal plates. Adv Technol Plast 1:407–414

    Google Scholar 

  64. Bouzid Saï W, Ben SN, Lebrun JL (2001) Influence of machining by finishing milling on surface characteristics. Int J Mach Tools Manuf 41(3):443–450

    Article  Google Scholar 

  65. Fordham J, Pilkington R, Tang C (1997) The effect of different profiling techniques on the fatigue performance of metallic membranes of AISI 301 and Inconel 718. Int J Fatigue 19(6):487–502

    Article  Google Scholar 

  66. Suhr R (1988) High cycle fatigue(in high temperature materials). Inst Met Mech Test 226–287

  67. Suresh S (1998) Fatigue of materials. Dissertation. Cambridge University Press, Cambridge

  68. Siebel E (1957) Influence of surface roughness on the fatigue strength of steels and non-ferrous alloys. Eng Dig 18:109–112

    Google Scholar 

  69. Bayoumi MR, Abdellatif A (1995) Effect of surface finish on fatigue strength. Eng Fract Mech 51(5):861–870

    Article  Google Scholar 

  70. Leverant G, Langer B, Yuen A et al (1979) Surface residual stresses, surface topography and the fatigue behavior of Ti-6AI-4V. Metall Trans A 10(2):251–257

    Article  Google Scholar 

  71. Koster, W (1991) Effect of residual stress on fatigue of structural alloys. Practical applications of residual stress technology, conference proceedings, Indianapolis, Indiana

  72. Griffiths B (2001) Manufacturing surface technology: surface integrity and functional performance. Elsevier, Amsterdam

    Google Scholar 

  73. Hirano K, Enomoto K, Hayashi E et al (1997) Effects of water jet peening on corrosion resistance and fatigue strength of type 304 stainless steel. J Soc Mater Sci Jpn 45(7):740–745

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Pramanik.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pramanik, A., Dixit, A.R., Chattopadhyaya, S. et al. Fatigue life of machined components. Adv. Manuf. 5, 59–76 (2017). https://doi.org/10.1007/s40436-016-0168-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40436-016-0168-z

Keywords

Navigation