Skip to main content
Log in

Optimization of fused deposition modeling process parameters: a review of current research and future prospects

  • Published:
Advances in Manufacturing Aims and scope Submit manuscript

Abstract

Fused deposition modeling (FDM) is one of the most popular additive manufacturing technologies for various engineering applications. FDM process has been introduced commercially in early 1990s by Stratasys Inc., USA. The quality of FDM processed parts mainly depends on careful selection of process variables. Thus, identification of the FDM process parameters that significantly affect the quality of FDM processed parts is important. In recent years, researchers have explored a number of ways to improve the mechanical properties and part quality using various experimental design techniques and concepts. This article aims to review the research carried out so far in determining and optimizing the process parameters of the FDM process. Several statistical designs of experiments and optimization techniques used for the determination of optimum process parameters have been examined. The trends for future FDM research in this area are described.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Gebhardt A (2003) Rapid prototyping. Hanser, Munich

    Book  Google Scholar 

  2. Gibson I, Rosen DW, Stucker B (2010) Additive manufacturing technologies. Springer, Heidelberg

    Book  Google Scholar 

  3. Kai CC, Fai LK, Chu-Sing L (2003) Rapid prototyping: principles and applications in manufacturing. World Scientific Publishing Co. Pte. Ltd., Singapore

    Google Scholar 

  4. Upcraft S, Fletcher R (2003) The rapid prototyping technologies. Assem Autom 23(4):318–330

    Article  Google Scholar 

  5. Mansour S, Hague R (2003) Impact of rapid manufacturing on design for manufacture for injection moulding. Proc Inst Mech Eng Part B 217(4):453–461

    Article  Google Scholar 

  6. Hopkinson N, Hague R, Dickens P (eds) (2006) Rapid manufacturing: an industrial revolution for the digital age. Wiley, New Jersey

    Book  Google Scholar 

  7. Bernard A, Fischer A (2002) New trends in rapid product development. CIRP Ann Manuf Technol 51(2):635–652

    Article  Google Scholar 

  8. Gebhardt A (2012) Understanding additive manufacturing. Carl Hanser Verlag GmbH & Co. KG, Munich

    Book  Google Scholar 

  9. Kai CC, Fai LK, Chu-Sing L (2010) Rapid prototyping: principles and applications. World Scientific Publishing Co. Pte. Ltd., Singapore

  10. Noorani R (2006) Rapid prototyping: principles and applications. Wiley, New Jersey

    Google Scholar 

  11. Montero M, Roundy S, Odell D et al (2001) Material characterization of fused deposition modeling ABS by designed experiments. In: Proceedings of Rapid Prototyping and Manufacturing Conference. Cincinnati, OH, USA

  12. Masood SH (1996) Intelligent rapid prototyping with fused deposition modelling. Rapid Prototyp J 2(1):24–33

    Article  Google Scholar 

  13. Groza JR, Shackelford JF (2010) Materials processing handbook. CRC Press, Boca Raton

    Google Scholar 

  14. Anitha R, Arunachalam S, Radhakrishnan P (2001) Critical parameters influencing the quality of prototypes in fused deposition modelling. J Mater Process Technol 118(1–3):385–388

    Article  Google Scholar 

  15. Nancharaiah T, Raju DR, Raju VR (2010) An experimental investigation on surface quality and dimensional accuracy of FDM components. Int J Emerg Technol 1(2):106–111

    Google Scholar 

  16. Thrimurthulu K, Pandey PM, Reddy NV (2004) Optimum part deposition orientation in fused deposition modeling. Int J Mach Tools Manuf 44(6):585–594

    Article  Google Scholar 

  17. Horvath D, Noorani R, Mendelson M (2007) Improvement of surface roughness on ABS 400 polymer using design of experiments (DOE). Mater Sci Forum 561:2389–2392

    Article  Google Scholar 

  18. Wang CC, Lin TW, Hu SS (2007) Optimizing the rapid prototyping process by integrating the Taguchi method with the gray relational analysis. Rapid Prototyp J 13(5):304–315

    Article  Google Scholar 

  19. Sood AK, Ohdar R, Mahapatra S (2009) Improving dimensional accuracy of fused deposition modelling processed part using grey Taguchi method. Mater Des 30(10):4243–4252

    Article  Google Scholar 

  20. Zhang JW, Peng AH (2012) Process-parameter optimization for fused deposition modeling based on Taguchi method. Adv Mater Res 538:444–447

    Article  Google Scholar 

  21. Sahu RK, Mahapatra S, Sood AK (2013) A study on dimensional accuracy of fused deposition modeling (FDM) processed parts using fuzzy logic. J Manuf Sci Prod 13(3):183–197

    Google Scholar 

  22. Lee B, Abdullah J, Khan Z (2005) Optimization of rapid prototyping parameters for production of flexible ABS object. J Mater Process Technol 169(1):54–61

    Article  Google Scholar 

  23. Laeng J, Khan ZA, Khu SY (2006) Optimizing flexible behaviour of bow prototype using Taguchi approach. J Appl Sci 6:622–630

    Article  Google Scholar 

  24. Zhang Y, Chou K (2008) A parametric study of part distortions in fused deposition modelling using three-dimensional finite element analysis. Proc Inst Mech Eng Part B 222(8):959–968

    Article  Google Scholar 

  25. Nancharaiah T (2011) Optimization of process parameters in FDM process using design of experiments. Int J Emerg Technol 2(1):100–102

  26. Kumar GP, Regalla SP (2012) Optimization of support material and build time in fused deposition modeling (FDM). Appl Mech Mater 110:2245–2251

    Google Scholar 

  27. Ahn SH, Montero M, Odell D et al (2002) Anisotropic material properties of fused deposition modeling ABS. Rapid Prototyp J 8(4):248–257

    Article  Google Scholar 

  28. Ang KC, Leong KF, Chua CK et al (2006) Investigation of the mechanical properties and porosity relationships in fused deposition modelling-fabricated porous structures. Rapid Prototyp J 12(2):100–105

    Article  Google Scholar 

  29. Sood AK, Ohdar RK, Mahapatra SS (2010) Parametric appraisal of mechanical property of fused deposition modelling processed parts. Mater Des 31(1):287–295

    Article  Google Scholar 

  30. Percoco G, Lavecchia F, Galantucci LM (2012) Compressive properties of FDM rapid prototypes treated with a low cost chemical finishing. Res J Appl Sci Eng Technol 4(19):3838–3842

    Google Scholar 

  31. Rayegani F, Onwubolu GC (2014) Fused deposition modelling (FDM) process parameter prediction and optimization using group method for data handling (GMDH) and differential evolution (DE). Int J Adv Manuf Technol 73(1–4):509–519

  32. Masood SH, Mau K, Song WQ (2010) Tensile properties of processed FDM polycarbonate material. Mater Sci Forum 654:2556–2559

    Article  Google Scholar 

  33. Arivazhagan A, Masood SH, Sbarski I (2011) Dynamic mechanical analysis of FDM rapid prototyping processed polycarbonate material. In: Proceedings of the 69th annual technical conference of the society of plastics engineers 2011 (ANTEC 2011), vol 1. Boston, Massachusetts, United States, 1–5 May 2011, pp 950–955

  34. Arivazhagan A, Masood SH (2012) Dynamic mechanical properties of ABS material processed by fused deposition modelling. Int J Eng Res Appl 2(3):2009–2014

    Google Scholar 

  35. Jami H, Masood SH, Song WQ (2013) Dynamic response of FDM made ABS parts in different part orientations. Adv Mater Res 748:291–294

    Article  Google Scholar 

  36. Peace GS (1993) Taguchi methods, a hands-on approach. Addison-Wesley Publishing Company, Reading, MA

    Google Scholar 

  37. Roy RK (2010) A primer on the Taguchi method. Society of Manufacturing Engineers, Dearborn

    Google Scholar 

  38. Montgomery DC (2008) Design and analysis of experiments. Wiley, New Jersey

    Google Scholar 

  39. Wu CJ, Hamada MS (2001) Experiments: planning, analysis, and parameter design optimization. Wiley, New Jersey

    Google Scholar 

  40. Medsker L, Jain LC (1999) Recurrent neural networks: design and applications. CRC Press, Boca Raton

    Google Scholar 

  41. Haykin S (1999) Neural networks: a comprehensive foundation. Prentice-Hall Inc., New Jersey

    MATH  Google Scholar 

  42. Correia DS, Gonçalves CV (2005) Comparison between genetic algorithms and response surface methodology in GMAW welding optimization. J Mater Process Technol 160(1):70–76

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Omar A. Mohamed.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mohamed, O.A., Masood, S.H. & Bhowmik, J.L. Optimization of fused deposition modeling process parameters: a review of current research and future prospects. Adv. Manuf. 3, 42–53 (2015). https://doi.org/10.1007/s40436-014-0097-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40436-014-0097-7

Keywords

Navigation