Skip to main content
Log in

Evaluation of inverse dynamics of hexarot-based centrifugal simulators

  • Published:
International Journal of Dynamics and Control Aims and scope Submit manuscript

Abstract

Dynamic modeling is necessary for design, optimization, simulation and control of mechanisms. This paper presents the evaluation of the inverse dynamics model which has recently been developed based on the Newton–Euler approach for a hexarot manipulator. The evaluation is performed under SimMechanics environment. By comparing the results of the analytical and SimMechanics models, it is found that the both the models are accurate and reliable.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. Qazani MRC, Pedrammehr S, Rahmani A, Danaei B, Ettefagh MM, Rajab AKS, Abdi H (2015) Kinematic analysis and workspace determination of hexarot-a novel 6-DOFparallel manipulator with a rotation-symmetric arm system. Robotica 33:1686–1703

    Article  Google Scholar 

  2. Qazani MRC, Pedrammehr S, Rahmani A, Shahryari M, Rajab AKS, Ettefagh MM (2014) An experimental study on motion error of hexarot parallel manipulator. Int J Adv Manuf Technol 72:1361–1376

    Article  Google Scholar 

  3. Pedrammehr S, Qazani MRC, Abdi H, Nahavandi S (2016) Mathematical modelling of linear motion error for Hexarot parallel manipulators. Appl Math Model 40:942–954

    Article  MathSciNet  Google Scholar 

  4. Pedrammehr S, Danaei B, Abdi H, Masule MT, Nahavandi S (2018) Dynamic analysis of Hexarot: axis symmetric parallel manipulator. Robotica 36:225–240

    Article  Google Scholar 

  5. Pedrammehr S, Najdovski Z, Abdi H, Nahavandi S (2017) Design methodology for a hexarot-based centrifugal high-G simulator. In: 2017 IEEE international conference on systems, man, and cybernetics SMC2017, Banf, Canada

  6. Pedrammehr S, Nahavandi S, Abdi H (2018) Closed-form dynamics of hexarot parallel manipulator by means of the principle of virtual work. Acta Mech Sin. https://doi.org/10.1007/s10409-018-0761-4

    Article  MathSciNet  Google Scholar 

  7. Cheraghpour F, Moosavian SAA, Nahvi A (2009) Multiple aspect grasp performance index for cooperative object manipulation tasks. In: 2009 IEEE/ASME international conference on advanced intelligent mechatronics, pp 386–391

  8. Qazani MRC, Pedrammehr S, Nategh MJ (2014) A study on motion of machine tools’ hexapod table on freeform surfaces with circular interpolation. Int J Adv Manuf Technol 75:1763–1771

    Article  Google Scholar 

  9. Tajari MJ, Pedrammehr S, Qazani MRC, Nategh MJ (2017) The effects of joint clearance on the kinematic error of the hexapod tables. In: The 5th international conference on robotics and mechatronics, ICRoM 2017, Tehran, Iran

  10. Eslamy M, Moosavian SAA (2010) Dynamics and cooperative object manipulation control of suspended mobile manipulators. J Intell Robot Syst 60:181–199

    Article  Google Scholar 

  11. Qazani MRC, Pedrammehr S, Nategh MJ (2018) An investigation on the motion error of machine tools’ hexapod table. Int J Precis Eng Man. https://doi.org/10.1007/s12541-018-0056-5

    Article  Google Scholar 

  12. Mohajerpoor R, Rezaei M, Talebi A, Noorhosseini M, Monfaredi RA (2012) robust adaptive hybrid force/position control scheme of two planar manipulators handling an unknown object interacting with an environment. Proc Inst Mech Eng Part I J Syst Control Eng 226:509–522

    Article  Google Scholar 

  13. Zeng G, Hemami A (1997) An overview of robot force control. Robotica 15:473–482

    Article  Google Scholar 

  14. Karimi M, Moosavian SAA (2010) Modified transpose effective jacobian law for control of underactuated manipulators. Adv Robot 24:605–626

    Article  Google Scholar 

  15. Moosavian SAA, Papadopoulos E (2010) Cooperative object manipulation with contact impact using multiple impedance control. Int J Control Autom Syst 8:314–327

    Article  Google Scholar 

  16. Dasgupta B, Mruthyunjaya TS (1998) A Newton–Euler formulationfor the inverse dynamics of the Stewart platform manipulator. Mech Mach Theory 33:1135–1152

    Article  MathSciNet  Google Scholar 

  17. Dasgupta B, Mruthyunjaya TS (1998) Closed-form dynamic equations of the general Stewart platform through the Newton–Euler approach. Mech Mach Theory 33:993–1012

    Article  MathSciNet  Google Scholar 

  18. Dasgupta B, Mruthyunjaya TS (2000) Erratum to “A Newton–Euler formulation for the inverse dynamics of the Stewart platform manipulator” [Mechanism and Machine Theory 33 (8) 1135–1152]. Mech Mach Theory 35:V

  19. Dasgupta B, Mruthyunjaya TS (2000) Erratum to “Closed-form dynamic equations of the general Stewart platform through the Newton–Euler approach” [Mechanism and Machine Theory 33 (7) 993–1012]. Mech Mach Theory 35:III

    Article  MathSciNet  Google Scholar 

  20. Fu S, Yao Y (2007) Comments on “A Newton–Euler formulation for the inverse dynamics of Stewart platform manipulator” by B. Dasguptaand T.S.Mruthyunjaya [Mech. Mach. Theory 33 (1998) 1135-1152]. Mech Mach Theory 42:1668–1671

  21. Vakil M, Pendar H, Zohoor H (2008) Comments to the: “Closed-form dynamic equations of the general Stewart platform through the Newton–Euler approach” and “A Newton–Euler formulation for the inverse dynamics of Stewart platform manipulator”. Mech Mach Theory 43:1349–1351

    Article  Google Scholar 

  22. Harib K, Srinivasan K (2003) Kinematic and dynamic analysis of Stewart platform-based machine tool structures. Robotica 21:541–554

    Article  Google Scholar 

  23. Pedrammehr S, Mahboubkhah M, Khani N (2012) Improved dynamic equations for the generally configured Stewart platform manipulator. J Mech Sci Technol 26:711–721

    Article  Google Scholar 

  24. Pedrammehr S, Mahboubkhah M, Pakzad S (2011) An improved solution to the inverse dynamics of the general Stewart platform. In: 2011 IEEE international conference on mechatronics ICM 2011, pp 392–397

  25. Staicu S, Liu XJ, Wang J (2007) Inverse dynamics of the HALF parallel manipulator with revolute actuators. Nonlinear Dyn 50:1–12

    Article  Google Scholar 

  26. Pedrammehr S, Mahboubkhah M, Khani N (2011) Natural frequencies and mode shapes for vibrations of machine tools’ hexapod table. In: 1st international conference on acoustics and vibration ISAV 2011, Iran

  27. Pedrammehr S, Mahboubkhah M, Khani N (2013) A study on vibration of Stewart platform-based machine tool table. Int J Adv Manuf Technol 65:991–1007

    Article  Google Scholar 

  28. Zhao Y, Gao F (2009) Inverse dynamics of the 6-dofout-parallel manipulator by means of the principle of virtual work. Robotica 27:259–268

    Article  Google Scholar 

  29. Abedinnasab MH, Vossoughi GR (2009) Analysis of a 6-DOF redundantly actuated 4-legged parallel mechanism. Nonlinear Dyn 58:611–622

    Article  Google Scholar 

  30. Rahmani A, Ghanbari A, Pedrammehr S (1016) Kinematic analysis for hybrid 2-(6-UPU) manipulator by wavelet neural network. Adv Mater Res 2014:726–730

    Google Scholar 

  31. You W, Kong MX, Du ZJ, Sun LN (2009) High efficient inverse dynamic calculation approach for ahaptic device with pantograph parallel platform. Multibody Syst Dyn 21:233–247

    Article  MathSciNet  Google Scholar 

  32. Miller K (2004) Optimal design and modeling of spatial parallel manipulators. Int J Robot Res 23:127–140

    Article  Google Scholar 

  33. Staicu S, Zhang D (2008) A novel dynamic modelling approach for parallel mechanisms analysis. Robot Comput Integr Manuf 24:167–172

    Article  Google Scholar 

  34. Lebret G, Liu K, Lewis FL (1993) Dynamic analysis and control of a Stewart platform manipulator. J Robot Syst 10:629–655

    Article  Google Scholar 

  35. Pedrammehr S (2012) Investigation of factors influential on the dynamic features of machinetools’ hexapod table. In: 2nd international conference on acoustics and vibration ISAV 2012, Iran

  36. Pedrammehr S, Mahboubkhah M, Qazani MRC, Rahmani A, Pakzad S (2014) Forced vibration analysis of milling machines hexapod table under machining forces. Stroj Vestn J Mech E 60:158–171

    Article  Google Scholar 

  37. Nuzhdin K, Musalimov V, Kalapyshina I (2015) Modelling of nonlinear dynamic of mechanic systems with the force tribological interaction. Tribol Ind 37(3):366–373

    Google Scholar 

  38. Abeywardena S, Chen C (2016) Inverse dynamic modelling of a three-legged six-degree-of-freedom parallel mechanism. Multibody Syst Dyn 41(1):1–24

    Article  MathSciNet  Google Scholar 

  39. Jianping L, Xiangyang Z, Quanqi M, Lei D (2011) Control system design and simulation of an aerial three-axis ISP system based on SimMechanics. In: 2011 Third international conference on measuring technology and mechatronics automation, pp 778–781

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Siamak Pedrammehr.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pedrammehr, S., Nahavandi, S. & Abdi, H. Evaluation of inverse dynamics of hexarot-based centrifugal simulators. Int. J. Dynam. Control 6, 1505–1515 (2018). https://doi.org/10.1007/s40435-018-0421-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40435-018-0421-3

Keywords

Navigation