Skip to main content

Advertisement

Log in

Realising the Potential of Urine and Saliva as Diagnostic Tools in Sport and Exercise Medicine

  • Review Article
  • Published:
Sports Medicine Aims and scope Submit manuscript

Abstract

Accurate monitoring of homeostatic perturbations following various psychophysiological stressors is essential in sports and exercise medicine. Various biomarkers are routinely used as monitoring tools in both clinical and elite sport settings. Blood collection and muscle biopsies, both invasive in nature, are considered the gold standard for the analysis of these biomarkers in exercise science. Exploring non-invasive methods of collecting and analysing biomarkers that are capable of providing accurate information regarding exercise-induced physiological and psychological stress is of obvious practical importance. This review describes the potential benefits, and the limitations, of using saliva and urine to ascertain biomarkers capable of identifying important stressors that are routinely encountered before, during, or after intense or unaccustomed exercise, competition, over-training, and inappropriate recovery. In particular, we focus on urinary and saliva biomarkers that have previously been used to monitor muscle damage, inflammation, cardiovascular stress, oxidative stress, hydration status, and brain distress. Evidence is provided from a range of empirical studies suggesting that urine and saliva are both capable of identifying various stressors. Although additional research regarding the efficacy of using urine and/or saliva to indicate the severity of exercise-induced psychophysiological stress is required, it is likely that these non-invasive biomarkers will represent “the future” in sports and exercise medicine.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Han WK, Wagener G, Zhu Y, et al. Urinary biomarkers in the early detection of acute kidney injury after cardiac surgery. Clin J Am Soc Nephrol. 2009;4(5):873–82.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Vasan RS. Biomarkers of cardiovascular disease molecular basis and practical considerations. Circulation. 2006;113(19):2335–62.

    Article  PubMed  Google Scholar 

  3. Poste G. Bring on the biomarkers. Nature. 2011;469(7329):156–7.

    Article  CAS  PubMed  Google Scholar 

  4. Jack CR Jr, Knopman DS, Jagust WJ, et al. Update on hypothetical model of Alzheimer’s disease biomarkers. Lancet Neurol. 2013;12(2):207–16.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Papa L, Ramia MM, Edwards D, et al. Systematic review of clinical studies examining biomarkers of brain injury in athletes after sports-related concussion. J Neurotrauma. 2015;32(10):661–73.

    Article  PubMed  PubMed Central  Google Scholar 

  6. Finsterer J. Biomarkers of peripheral muscle fatigue during exercise. BMC Musculoskelet Disord. 2012;13(1):218.

    Article  PubMed  PubMed Central  Google Scholar 

  7. Atkinsons A, Colburn W, DeGruttola V, et al. Biomarkers and surrogate endpoints: preferred definitions and conceptual framework. Biomarker definition working group. Clin Pharmacol Ther. 2001;69:89–95.

    Article  Google Scholar 

  8. Mayeux R. Biomarkers: potential uses and limitations. NeuroRx. 2004;1(2):182–8.

    Article  PubMed  PubMed Central  Google Scholar 

  9. Fryback DG, Thornbury JR. The efficacy of diagnostic imaging. Med Decis Mak. 1991;11(2):88–94.

    Article  CAS  Google Scholar 

  10. Ellenberg SS, Hamilton JM. Surrogate endpoints in clinical trials: cancer. Stat Med. 1989;8(4):405–13.

    Article  CAS  PubMed  Google Scholar 

  11. Lancaster GI, Halson SL, Khan Q, et al. Effects of acute exhaustive exercise and chronic exercise training on type 1 and type 2 T lymphocytes. Exerc Immunol Rev. 2004;10(91):106.

    Google Scholar 

  12. Ramos D, Martins EG, Viana-Gomes D, et al. Biomarkers of oxidative stress and tissue damage released by muscle and liver after a single bout of swimming exercise. Appl Physiol Nutr Metab. 2013;38(5):507–11.

    Article  CAS  PubMed  Google Scholar 

  13. Bessa A, Oliveira VN, De Agostini GG, et al. Exercise intensity and recovery: biomarkers of injury, inflammation and oxidative stress. J Strength Cond Res. 2013. doi:10.1519/JSC.0b013e31828f1ee9.

    Google Scholar 

  14. De Oliveira V, Bessa A, Lamounier R, et al. Changes in the salivary biomarkers induced by an effort test. Int J Sports Med. 2010;31(6):377–81.

    Article  PubMed  CAS  Google Scholar 

  15. Fuchs D, Chiodi F, Albert J, et al. Neopterin concentrations in cerebrospinal fluid and serum of individuals infected with HIV-1. AIDS. 1989;3(5):285–8.

    Article  CAS  PubMed  Google Scholar 

  16. Levine JE, Logan BR, Wu J, et al. Acute graft-versus-host disease biomarkers measured during therapy can predict treatment outcomes: a Blood and Marrow Transplant Clinical Trials Network study. Blood. 2012;119(16):3854–60.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Bokemeyer C, Bondarenko I, Hartmann J, et al. Efficacy according to biomarker status of cetuximab plus FOLFOX-4 as first-line treatment for metastatic colorectal cancer: the OPUS study. Ann Oncol. 2011;22(7):1535–46.

    Article  CAS  PubMed  Google Scholar 

  18. Schulte PA, Perera FP. Molecular epidemiology: principles and practices. Academic Press; 1998.

  19. Mosby. Mosby’s Medical Dictionary, 8th ed. Elsevier Inc.; 2009.

  20. Lindsay A, Lewis J, Scarrott C, et al. Assessing the effectiveness of selected biomarkers in the acute and cumulative physiological stress response in professional rugby union through non-invasive assessment. Int J Sports Med. 2015;36(6):446–54.

    Article  CAS  PubMed  Google Scholar 

  21. Okamura H, Kinoshita M, Saitsu H, et al. Non-invasive surrogate markers for plasma cortisol in newborn infants: utility of urine and saliva samples and caution for venipuncture blood samples. J Clin Endocrinol Metab. 2014;99(10):E2020–4.

    Article  CAS  PubMed  Google Scholar 

  22. Weckesser LJ, Plessow F, Pilhatsch M, et al. Do venepuncture procedures induce cortisol responses? A review, study, and synthesis for stress research. Psychoneuroendocrinology. 2014;46:88–99.

    Article  CAS  PubMed  Google Scholar 

  23. Hands C, Round J, Thomas J. Evaluating venepuncture practice on a general children’s ward: Christopher Hands and colleagues investigated the level of distress for children undergoing venepucture in hospital, and assessed whether there is scope to improve staff training and other aspects of managing the procedure. Paediatr Care. 2010;22(2):32–5.

    Article  Google Scholar 

  24. Keep PJ, Jenkins JR. From the other end of the needle. The patient’s experience of routine anaesthesia. Anaesthesia. 1978;33(9):830–2.

    Article  CAS  PubMed  Google Scholar 

  25. Turpeinen U, Hämäläinen E. Determination of cortisol in serum, saliva and urine. Best Pract Res Clin Endocrinol Metab. 2013;27(6):795–801.

    Article  CAS  PubMed  Google Scholar 

  26. Lindsay A, Janmale T, Draper N, et al. Measurement of changes in urinary neopterin and total neopterin in body builders using SCX HPLC. Pteridines. 2014;25(2):53–63.

    Article  CAS  Google Scholar 

  27. Lam PM, Mistry V, Marczylo TH, et al. Rapid measurement of 8-oxo-7, 8-dihydro-2′-deoxyguanosine in human biological matrices using ultra-high-performance liquid chromatography–tandem mass spectrometry. Free Radic Biol Med. 2012;52(10):2057–63.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Cunniffe B, Hore AJ, Whitcombe DM, et al. Time course of changes in immuneoendocrine markers following an international rugby game. Eur J Appl Physiol. 2010;108(1):113–22.

    Article  PubMed  Google Scholar 

  29. Banfi G, Fabbro Md, Mauri C, et al. Haematological parameters in elite rugby players during a competitive season. Clin Lab Haematol. 2006;28(3):183–8.

    Article  CAS  PubMed  Google Scholar 

  30. Pedersen BK, Toft AD. Effects of exercise on lymphocytes and cytokines. Br J Sports Med. 2000;34(4):246–51.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Fuchs D, Granditsch G, Hausen A, et al. Urinary neopterin excretion in coeliac disease. Lancet. 1983;322(8347):463–4.

    Article  Google Scholar 

  32. Eisenhut M, Hargreaves D, Scott A, et al. Urinary neopterin levels discriminate active from latent mycobacterium tuberculosis infection. Eur Respir J. 2011;38(Suppl 55):p4388.

    Google Scholar 

  33. Sari-Sarraf V, Reilly T, Doran D. Salivary IgA response to intermittent and continuous exercise. Int J Sports Med. 2006;27(11):849–55.

    Article  CAS  PubMed  Google Scholar 

  34. Walsh NP, Bishop NC, Blackwell J, et al. Salivary IgA response to prolonged exercise in a cold environment in trained cyclists. Med Sci Sports Exerc. 2002;34(10):1632–7.

    Article  CAS  PubMed  Google Scholar 

  35. Cunniffe B, Griffiths H, Proctor W, et al. Mucosal immunity and illness incidence in elite rugby union players across a season. Med Sci Sports Exerc. 2011;43(3):388–97.

    Article  PubMed  Google Scholar 

  36. Morgan KA. Salivary testosterone and cortisol measurements in profesional elite rugby union players [Masters of Science]. South Wales: University of Glamorgan; 2011.

    Google Scholar 

  37. Mazzeo RS, Donovan D, Fleshner M, et al. Interleukin-6 response to exercise and high-altitude exposure: influence of α-adrenergic blockade. J Appl Physiol. 2001;91(5):2143–9.

    CAS  PubMed  Google Scholar 

  38. Read G. Hormones in saliva. Boca Raton (Florida): CRC Press; 1989.

    Google Scholar 

  39. Berkovitz BK, Moxham BJ, Holland GR. Oral anatomy, histology and embryology. Mosby Edinburgh; 2002.

  40. Kaufman E, Lamster IB. The diagnostic applications of saliva—a review. Crit Rev Oral Biol Med. 2002;13(2):197–212.

    Article  PubMed  Google Scholar 

  41. Mandel I, Wotman S. The salivary secretions in health and disease. Oral Sci Rev. 1975;8:25–47.

    Google Scholar 

  42. Fox P. Saliva composition and its importance in dental health. Compendium (Newtown, Pa) Supplement. 1988;(13):S457–60.

  43. Sreebny L. Salivary flow in health and disease. Compendium (Newtown, Pa) Supplement. 1988;(13):S461–9.

  44. Seward MH. Saliva: its role in health and disease. FDI World Dental Press; 1992.

  45. Hofman LF. Human saliva as a diagnostic specimen. J Nutr. 2001;131(5):1621S–5S.

    CAS  PubMed  Google Scholar 

  46. Bosch JA, Ring C, de Geus EJC, et al. Stress and secretory immunity. Int Rev Neurobiol. 2002;52:213–53.

    Article  CAS  PubMed  Google Scholar 

  47. Bishop NC, Walker GJ, Scanlon GA, et al. Salivary IgA responses to prolonged intensive exercise following caffeine ingestion. Med Sci Sports Exerc. 2006;38(3):513–9.

    Article  CAS  PubMed  Google Scholar 

  48. Bishop NC, Blannin AK, Armstrong E, et al. Carbohydrate and fluid intake affect the saliva flow rate and IgA response to cycling. Med Sci Sports Exerc. 2000;32(12):2046–51.

    Article  CAS  PubMed  Google Scholar 

  49. Nieman D, Dumke C, Henson D, et al. Immune and oxidative changes during and following the Western States Endurance Run. Int J Sports Med. 2003;24(7):541–7.

    Article  CAS  PubMed  Google Scholar 

  50. Tomasi TB, Trudeau FB, Czerwinski D, et al. Immune parameters in athletes before and after strenuous exercise. J Clin Immunol. 1982;2(3):173–8.

    Article  CAS  PubMed  Google Scholar 

  51. Mackinnon LT, Chick TW, Van As A, et al. Decreased secretory immunoglobulins following intense endurance exercise. Res Sports Med. 1989;1(3):209–18.

    Google Scholar 

  52. Blannin A, Robson P, Walsh N, et al. The effect of exercising to exhaustion at different intensities on saliva immunoglobulin A, protein and electrolyte secretion. Int J Sports Med. 1998;19(08):547–52.

    Article  CAS  PubMed  Google Scholar 

  53. Walsh N. The effects of high-intensity intermittent exercise on saliva IgA, total protein and alpha-amylase. J Sports Sci. 1999;17(2):129–34.

    Article  CAS  PubMed  Google Scholar 

  54. Moreira A, Arsati F, Cury PR, et al. Salivary immunoglobulin A response to a match in top-level Brazilian soccer players. J Strength Cond Res. 2009;23(7):1968–73.

    Article  PubMed  Google Scholar 

  55. Sari-Sarraf V, Reilly T, Doran DA, et al. The effects of single and repeated bouts of soccer-specific exercise on salivary IgA. Arch Oral Biol. 2007;52(6):526–32.

    Article  CAS  PubMed  Google Scholar 

  56. Reid M, Drummond P, Mackinnon L. The effect of moderate aerobic exercise and relaxation on secretory immunoglobulin A. Int J Sports Med. 2001;22(2):132–7.

    Article  CAS  PubMed  Google Scholar 

  57. Nehlsen-Cannarella SL, Nieman DC, Fagoaga OR, et al. Saliva immunoglobulins in elite women rowers. Eur J Appl Physiol. 2000;81(3):222–8.

    Article  CAS  PubMed  Google Scholar 

  58. Proctor GB, Carpenter GH. Regulation of salivary gland function by autonomic nerves. Auton Neurosci. 2007;133(1):3–18.

    Article  CAS  PubMed  Google Scholar 

  59. Chicharro JL, Lucía A, Pérez M, et al. Saliva composition and exercise. Sports Med. 1998;26(1):17–27.

    Article  CAS  PubMed  Google Scholar 

  60. Hu S, Denny P, Denny P, et al. Differentially expressed protein markers in human submandibular and sublingual secretions. Int J Oncol. 2004;25(5):1423–30.

    CAS  PubMed  Google Scholar 

  61. Kalk W, Vissink A, Stegenga B, et al. Sialometry and sialochemistry: a non-invasive approach for diagnosing Sjögren’s syndrome. Ann Rheum Dis. 2002;61(2):137–44.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Aps JK, Martens LC. Review: the physiology of saliva and transfer of drugs into saliva. Forensic Sci Int. 2005;150(2):119–31.

    Article  CAS  PubMed  Google Scholar 

  63. Walsh NP, Laing SJ, Oliver SJ, et al. Saliva parameters as potential indices of hydration status during acute dehydration. Med Sci Sports Exerc. 2004;36(9):1535–42.

    Article  PubMed  Google Scholar 

  64. Schipper RG, Silletti E, Vingerhoeds MH. Saliva as research material: biochemical, physicochemical and practical aspects. Arch Oral Biol. 2007;52(12):1114–35.

    Article  CAS  PubMed  Google Scholar 

  65. Zelles T, Purushotham K, Macauley S, et al. Concise review: saliva and growth factors: the fountain of youth resides in us all. J Dent Res. 1995;74(12):1826–32.

    Article  CAS  PubMed  Google Scholar 

  66. Rehak NN, Cecco SA, Csako G. Biochemical composition and electrolyte balance of” unstimulated” whole human saliva. Clin Chem Lab Med. 2000;38(4):335–43.

    Article  CAS  PubMed  Google Scholar 

  67. Chiappin S, Antonelli G, Gatti R, et al. Saliva specimen: a new laboratory tool for diagnostic and basic investigation. Clin Chim Acta. 2007;383(1):30–40.

    Article  CAS  PubMed  Google Scholar 

  68. Guan Y, Chu Q, Ye J. Determination of uric acid in human saliva by capillary electrophoresis with electrochemical detection: potential application in fast diagnosis of gout. Anal Bioanal Chem. 2004;380(7–8):913–7.

    Article  CAS  PubMed  Google Scholar 

  69. Diab-Ladki R, Pellat B, Chahine R. Decrease in the total antioxidant activity of saliva in patients with periodontal diseases. Clin Oral Investig. 2003;7(2):103–7.

    Article  PubMed  Google Scholar 

  70. Lloyd JE, Broughton A, Selby C. Salivary creatinine assays as a potential screen for renal disease. Ann Clin Biochem. 1996;33(5):428–31.

    Article  CAS  PubMed  Google Scholar 

  71. Agha-Hosseini F, Dizgah IM, Amirkhani S. The composition of unstimulated whole saliva of healthy dental students. J Contemp Dent Pract. 2006;7(2):104–11.

    PubMed  Google Scholar 

  72. Coufal P, Zuska J, van de Goor T, et al. Separation of twenty underivatized essential amino acids by capillary zone electrophoresis with contactless conductivity detection. Electrophoresis. 2003;24(4):671–7.

    Article  CAS  PubMed  Google Scholar 

  73. Cooke M, Leeves N, White C. Time profile of putrescine, cadaverine, indole and skatole in human saliva. Arch Oral Biol. 2003;48(4):323–7.

    Article  CAS  PubMed  Google Scholar 

  74. Pfaffe T, Cooper-White J, Beyerlein P, et al. Diagnostic potential of saliva: current state and future applications. Clin Chem. 2011;57(5):675–87.

    Article  CAS  PubMed  Google Scholar 

  75. Marini A, Cabassi E. La saliva: approccio complementare nella diagnostica clinica e nella ricerca biologica. Ann Fac Med Vet Parma. 2002;22:295–311.

    Google Scholar 

  76. Kumar AM, Solano MP, Fernandez JB, et al. Adrenocortical response to ovine corticotropin-releasing hormone in young men: cortisol measurement in matched samples of saliva and plasma. Horm Res Paediatr. 2005;64(2):55–60.

    Article  CAS  Google Scholar 

  77. Devic I, Hwang H, Edgar JS, et al. Salivary α-synuclein and DJ-1: potential biomarkers for Parkinson’s disease. Brain. 2011;134(Pt 7):e178.

    Article  PubMed  PubMed Central  Google Scholar 

  78. Yoon AJ, Cheng B, Philipone E, et al. Inflammatory biomarkers in saliva: assessing the strength of association of diabetes mellitus and periodontal status with the oral inflammatory burden. J Clin Periodontol. 2012;39(5):434–40.

    Article  CAS  PubMed  Google Scholar 

  79. Gleeson M, Bishop N, Oliveira M, et al. Respiratory infection risk in athletes: association with antigen-stimulated IL-10 production and salivary IgA secretion. Scand J Med Sci Sports. 2012;22(3):410–7.

    Article  CAS  PubMed  Google Scholar 

  80. Amiri A, Pirani P, Esfahani E. The relationship between salivary IgA and cortisol concentrations and psychological overtraining symptoms in elite soccer players. Iran J Health Phys Act. 2011;2(1):20–4.

    Google Scholar 

  81. Pedersen AM, Bardow A, Nauntofte B. Salivary changes and dental caries as potential oral markers of autoimmune salivary gland dysfunction in primary Sjögren’s syndrome. BMC Clin Pathol. 2005;5(1):4.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  82. Li Y, John MAS, Zhou X, et al. Salivary transcriptome diagnostics for oral cancer detection. Clin Cancer Res. 2004;10(24):8442–50.

    Article  CAS  PubMed  Google Scholar 

  83. Papacosta E, Nassis GP. Saliva as a tool for monitoring steroid, peptide and immune markers in sport and exercise science. J Sci Med Sport. 2011;14(5):424–34.

    Article  PubMed  Google Scholar 

  84. Allgrove JE, Gomes E, Hough J, et al. Effects of exercise intensity on salivary antimicrobial proteins and markers of stress in active men. J Sports Sci. 2008;26(6):653–61.

    Article  PubMed  Google Scholar 

  85. Gleeson M, McDonald W, Cripps A, et al. The effect on immunity of long-term intensive training in elite swimmers. Clin Exp Immunol. 1995;102(1):210–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Han Y, Wang H, Liu Y. Rowing, upper respiratory tract infections and salivary sIgA. J Shenyang Sport Univ. 2010;5:19.

    Google Scholar 

  87. Neville V, Gleeson M, Folland JP. Salivary IgA as a risk factor for upper respiratory infections in elite professional athletes. Med Sci Sports Exerc. 2008;40(7):1228–36.

    Article  CAS  PubMed  Google Scholar 

  88. Mortatti AL, Moreira A, Aoki MS, et al. Effect of competition on salivary cortisol, immunoglobulin A, and upper respiratory tract infections in elite young soccer players. J Strength Cond Res. 2012;26(5):1396–401.

    Article  PubMed  Google Scholar 

  89. Putlur P, Foster C, Miskowski JA, et al. Alteration of immune function in women collegiate soccer players and college students. J Sports Sci Med. 2004;3(4):234.

    PubMed  PubMed Central  Google Scholar 

  90. Nieman D, Henson D, Fagoaga O, et al. Change in salivary IgA following a competitive marathon race. Int J Sports Med. 2002;23(1):69–75.

    Article  CAS  PubMed  Google Scholar 

  91. Elloumi M, Maso F, Michaux O, et al. Behaviour of saliva cortisol [C], testosterone [T] and the T/C ratio during a rugby match and during the post-competition recovery days. Eur J Appl Physiol. 2003;90(1–2):23–8.

    Article  CAS  PubMed  Google Scholar 

  92. Maso F, Lac G, Filaire E, et al. Salivary testosterone and cortisol in rugby players: correlation with psychological overtraining items. Br J Sports Med. 2004;38(3):260–3.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Beaven CM, Gill ND, Cook CJ. Salivary testosterone and cortisol responses in professional rugby players after four resistance exercise protocols. J Strength Cond Res. 2008;22(2):426–32.

    Article  PubMed  Google Scholar 

  94. Kraemer WJ, Loebel CC, Volek JS, et al. The effect of heavy resistance exercise on the circadian rhythm of salivary testosterone in men. Eur J Appl Physiol. 2001;84(1–2):13–8.

    Article  CAS  PubMed  Google Scholar 

  95. Ghigiarelli JJ, Sell KM, Raddock JM, et al. Effects of strongman training on salivary testosterone levels in a sample of trained men. J Strength Cond Res. 2013;27(3):738–47.

    Article  PubMed  Google Scholar 

  96. Hayes LD, Bickerstaff GF, Baker JS. Interactions of cortisol, testosterone, and resistance training: influence of circadian rhythms. Chronobiol Int. 2010;27(4):675–705.

    Article  CAS  PubMed  Google Scholar 

  97. Cook CJ, Kilduff LP, Crewther BT, et al. Morning based strength training improves afternoon physical performance in rugby union players. J Sci Med Sport. 2014;17(3):317–21.

    Article  PubMed  Google Scholar 

  98. Hanson L, Bjorkander J, Oxelius V. Selective IgA deficiency. In: Primary and Secondary Immunodeficiency Disorders. New York: Churchill Livingstone; 1983.

  99. Fox PC. Xerostomia: evaluation of a symptom with increasing significance. J Am Dent Assoc (1939). 1985;110(4):519–25.

  100. Ammann AJ, Hong R. Selective IgA deficiency: presentation of 30 cases and a review of the literature. Medicine (Baltimore). 1971;50(3):223–36.

    Article  CAS  PubMed  Google Scholar 

  101. Kalsi J, Delacroix D, Hodgson H. IgA in alcoholic cirrhosis. Clin Exp Immunol. 1983;52(3):499.

    CAS  PubMed  PubMed Central  Google Scholar 

  102. Elkon KB, Inman RD, Culhane L, et al. Induction of polymeric IgA rheumatoid factors in infective endocarditis. Am J Med. 1983;75(5):785–9.

    Article  CAS  PubMed  Google Scholar 

  103. Procaccia S, Lazzarin A, Colucci A, et al. IgM, IgG and IgA rheumatoid factors and circulating immune complexes in patients with AIDS and AIDS-related complex with serological abnormalities. Clin Exp Immunol. 1987;67(2):236.

    CAS  PubMed  PubMed Central  Google Scholar 

  104. Rossen RD, Butler WT, Waldman RH, et al. The proteins in nasal secretion. II. A longitudinal study of IgA and neutralizing antibody levels in nasal washings from men infected with influenza virus. JAMA. 1970;211(7):1157–61.

    Article  CAS  PubMed  Google Scholar 

  105. Mackinnon L, Chick T, Van As A, et al. The effect of exercise on secretory and natural immunity. Adv Exp Med Biol. 1987;216A:869–76.

    Article  CAS  PubMed  Google Scholar 

  106. Levando V, Suzdal’Nitskii R, Pershin B, et al. Study of secretory and antiviral immunity in sportsmen. Res Sports Med. 1988;1(1):49–52.

    Google Scholar 

  107. Gleeson M, Pyne DB, Austin JP, et al. Epstein-Barr virus reactivation and upper-respiratory illness in elite swimmers. Med Sci Sports Exerc. 2002;34(3):411.

    Article  PubMed  Google Scholar 

  108. Bishop N, Gleeson M. Acute and chronic effects of exercise on markers of mucosal immunity. Front Biosci. 2009;14:4444–56.

    Article  CAS  Google Scholar 

  109. Bratthall D, Widerstrom L. Ups and downs for salivary IgA. Eur J Oral Sci. 1985;93(2):128–34.

    Article  CAS  Google Scholar 

  110. McDowell SL, Chaloa K, Housh TJ, et al. The effect of exercise intensity and duration on salivary immunoglobulin A. Eur J Appl Physiol. 1991;63(2):108–11.

    Article  CAS  Google Scholar 

  111. Tharp GD. Basketball exercise and secretory immunoglobulin A. Eur J Appl Physiol. 1991;63(3):312–4.

    Article  CAS  Google Scholar 

  112. Thorpe R, Sunderland C. Muscle damage, endocrine, and immune marker response to a soccer match. J Strength Cond Res. 2012;26(10):2783–90.

    Article  PubMed  Google Scholar 

  113. Gomes RV, Moreira A, Lodo L, et al. Monitoring training loads, stress, immune-endocrine responses and performance in tennis players. Biol Sport. 2013;30(3):173.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Koch AJ, Wherry AD, Petersen MC, et al. Salivary immunoglobulin A response to a collegiate rugby game. J Strength Cond Res. 2007;21(1):86–90.

    Article  PubMed  Google Scholar 

  115. Moreira A, Franchini E, de Freitas CG, et al. Salivary cortisol and immunoglobulin A responses to simulated and official Jiu-Jitsu matches. J Strength Cond Res. 2012;26(8):2185–91.

    Article  PubMed  Google Scholar 

  116. Roschel H, Barroso R, Batista M, et al. Do whole-body vibration exercise and resistance exercise modify concentrations of salivary cortisol and immunoglobulin A? Braz J Med Biol Res. 2011;44(6):592–7.

    Article  CAS  PubMed  Google Scholar 

  117. Carlson LA, Kenefick RW, Koch AJ. Influence of carbohydrate ingestion on salivary immunoglobulin A following resistance exercise. J Int Soc Sports Nutr. 2013;10(1):14.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Henson D, Nieman D, Davis J, et al. Post-160-km race illness rates and decreases in granulocyte respiratory burst and salivary IgA output are not countered by quercetin ingestion. Int J Sports Med. 2008;29(10):856–63.

    Article  CAS  PubMed  Google Scholar 

  119. Tauler P, Martinez S, Moreno C, et al. Changes in salivary hormones, immunoglobulin A, and C-reactive protein in response to ultra-endurance exercises. Appl Physiol Nutr Metab. 2013;39(5):560–5.

    Article  PubMed  CAS  Google Scholar 

  120. Gill S, Teixeira A, Rosado F, et al. The Impact of a 24-h ultra-marathon on salivary antimicrobial protein responses. Int J Sports Med. 2014;35(11):966–71.

    Article  CAS  PubMed  Google Scholar 

  121. Steerenberg PA, Asperen IA, Amerongen AN, et al. Salivary levels of immunoglobulin A in triathletes. Eur J Oral Sci. 1997;105(4):305–9.

    Article  CAS  PubMed  Google Scholar 

  122. Pedersen BK, Nieman DC. Exercise immunology: integration and regulation. Immunol Today. 1998;19(5):204–6.

    Article  CAS  PubMed  Google Scholar 

  123. Pyne D, Gleeson M. Effects of intensive exercise training on immunity in athletes. Int J Sports Med. 1998;19(Suppl 3):S183–91 (discussion S91–94).

  124. Mackinnon LT, Hooper S. Mucosal (secretory) immune system responses to exercise of varying intensity and during overtraining. Int J Sports Med. 1994;15(3):179.

    Article  Google Scholar 

  125. Shephard R, Shek P. Acute and chronic over-exertion: do depressed immune responses provide useful markers? Int J Sports Med. 1998;19(3):159–71.

    Article  CAS  PubMed  Google Scholar 

  126. Gleeson M, McDonald WA, Pyne DB, et al. Salivary IgA levels and infection risk in elite swimmers. Med Sci Sports Exerc. 1999;31(1):67.

    Article  CAS  PubMed  Google Scholar 

  127. Budgett R. Fatigue and underperformance in athletes: the overtraining syndrome. Br J Sports Med. 1998;32(2):107–10.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. Foster C. Monitoring training in athletes with reference to overtraining syndrome. Med Sci Sports Exerc. 1998;30(7):1164–8.

    Article  CAS  PubMed  Google Scholar 

  129. Gleeson M, McDonald W, Pyne D, et al. Immune status and respiratory illness for elite swimmers during a 12-week training cycle. Int J Sports Med. 2000;21(4):302–7.

    Article  CAS  PubMed  Google Scholar 

  130. Traeger Mackinnon L, Ginn E, Seymour GJ. Decreased salivary immunoglobulin A secretion rate after intense interval exercise in elite kayakers. Eur J Appl Physiol. 1993;67(2):180–4.

  131. Vardiman JP, Riggs CE, Galloway DL, et al. Salivary IgA is not a reliable indicator of upper respiratory infection in collegiate female soccer athletes. J Strength Cond Res. 2011;25(7):1937–42.

    Article  PubMed  Google Scholar 

  132. Southworth T, Atkins S, Hurst H, et al. Changes in salivary IgA and salivary cortisol measurements during ten repeated marathon races. J Athl Enhanc. 2013;2(3):1–5.

    Google Scholar 

  133. Lindsay A, Lewis JG, Gill N, et al. Immunity, inflammatory and psychophysiological stress response during a competition of professional rugby union. Pteridines. 2015. doi:10.1515/pterid-2015-0012.

    Google Scholar 

  134. Walsh NP, Gleeson M, Shephard RJ, et al. Position statement part one: immune function and exercise. Exerc Immunol Rev. 2011;17:6–63.

    PubMed  Google Scholar 

  135. Moreira A, Mortatti AL, Arruda AF, et al. Salivary IgA response and upper respiratory tract infection symptoms during a 21-week competitive season in young soccer players. J Strength Cond Res. 2014;28(2):467–73.

    Article  PubMed  Google Scholar 

  136. Nieman D, Henson D, Dumke C, et al. Relationship between salivary IgA secretion and upper respiratory tract infection following a 160-km race. J Sports Med Phys Fit. 2006;46(1):158–62.

    CAS  Google Scholar 

  137. Moreira A, Arsati F, de Oliveira Lima-Arsati YB, et al. Monitoring stress tolerance and occurrences of upper respiratory illness in basketball players by means of psychometric tools and salivary biomarkers. Stress Health. 2011;27(3):e166–72.

    Article  Google Scholar 

  138. Fahlman MM, Engels HJ. Mucosal IgA and URTI in American college football players: a year longitudinal study. Med Sci Sports Exerc. 2005;37(3):374.

    Article  CAS  PubMed  Google Scholar 

  139. Yamauchi R, Shimizu K, Kimura F, et al. Virus activation and immune function during intense training in rugby football players. Int J Sports Med. 2011;32(05):393–8.

    Article  CAS  PubMed  Google Scholar 

  140. Peters EM, Shaik J, Kleinveldt N. Upper respiratory tract infection symptoms in ultramarathon runners not related to immunoglobulin status. Clin J Sport Med. 2010;20(1):39–46.

    Article  PubMed  Google Scholar 

  141. Tiollier E, Gomez-Merino D, Burnat P, et al. Intense training: mucosal immunity and incidence of respiratory infections. Eur J Appl Physiol. 2005;93(4):421–8.

    Article  CAS  PubMed  Google Scholar 

  142. Garrett R, Grisham C. Biochemistry: Brooks. Cole; 2005.

  143. Shinkai S, Watanabe S, Asai H, et al. Cortisol response to exercise and post-exercise suppression of blood lymphocyte subset counts. Int J Sports Med. 1996;17(8):597–603.

    Article  CAS  PubMed  Google Scholar 

  144. Peake J. Exercise-induced alterations in neutrophil degranulation and respiratory burst activity: possible mechanisms of action. Exerc Immunol Rev. 2002;8:49–100.

    PubMed  Google Scholar 

  145. Tomchek L, Hartman D, Lewin A, et al. Role of corticosterone in modulation of eicosanoid biosynthesis and antiinflammatory activity by 5-lipoxygenase (5-LO) and cyclooxygenase (CO) inhibitors. Inflamm Res. 1991;34(1):20–4.

    CAS  Google Scholar 

  146. Suzuki K, Yamada M, Kurakake S, et al. Circulating cytokines and hormones with immunosuppressive but neutrophil-priming potentials rise after endurance exercise in humans. Eur J Appl Physiol. 2000;81(4):281–7.

    Article  CAS  PubMed  Google Scholar 

  147. Posey WC, Nelson HS, Branch B, et al. The effects of acute corticosteroid therapy for asthma on serum immunoglobulin levels. J Allergy Clin Immunol. 1978;62(6):340–8.

    Article  CAS  PubMed  Google Scholar 

  148. Krüger K, Agnischock S, Lechtermann A, et al. Intensive resistance exercise induces lymphocyte apoptosis via cortisol and glucocorticoid receptor-dependent pathways. J Appl Physiol. 2011;110(5):1226–32.

    Article  PubMed  CAS  Google Scholar 

  149. Sheffield-Moore M. Androgens and the control of skeletal muscle protein synthesis. Ann Med. 2000;32(3):181–6.

    Article  CAS  PubMed  Google Scholar 

  150. Bahrke MS, Yesalis CE III, Wright JE. Psychological and behavioural effects of endogenous testosterone levels and anabolic-androgenic steroids among males. Sports Med. 1990;10(5):303–37.

    Article  CAS  PubMed  Google Scholar 

  151. Wang C, Alexander G, Berman N, et al. Testosterone replacement therapy improves mood in hypogonadal men–a clinical research center study. J Clin Endocrinol Metab. 1996;81(10):3578–83.

    CAS  PubMed  Google Scholar 

  152. Saudan C, Baume N, Robinson N, et al. Testosterone and doping control. Br J Sports Med. 2006;40(suppl 1):i21–4.

    Article  PubMed  PubMed Central  Google Scholar 

  153. Chou I, Lien H-C, Lin H-C, et al. The relationship of salivary and cord blood cortisol inpreterm infants. J Pediatr Endocrinol Metab. 2011;24(1–2):85–8.

    PubMed  Google Scholar 

  154. Vining RF, McGinley RA. The measurement of hormones in saliva: possibilities and pitfalls. J Steroid Biochem. 1987;27(1):81–94.

    Article  CAS  PubMed  Google Scholar 

  155. Boron WF, Boulpaep EL. Medical physiology: a cellular and molecular approach. WB Saunders Co; 2009.

  156. McLellan CP, Lovell DI, Gass GC. Creatine kinase and endocrine responses of elite players pre, during, and post rugby league match play. J Strength Cond Res. 2010;24(11):2908–19.

    Article  PubMed  Google Scholar 

  157. Hough JP, Papacosta E, Wraith E, et al. Plasma and salivary steroid hormone responses of men to high-intensity cycling and resistance exercise. J Strength Cond Res. 2011;25(1):23–31.

    Article  PubMed  Google Scholar 

  158. O’Connor PJ, Morgan WP, Raglin JS, et al. Mood state and salivary cortisol levels following overtraining in female swimmers. Psychoneuroendocrinology. 1989;14(4):303–10.

    Article  PubMed  Google Scholar 

  159. Tsai M-L, Li T-L, Chou L-W, et al. Resting salivary levels of IgA and cortisol are significantly affected during intensive resistance training periods in elite male weightlifters. J Strength Cond Res. 2012;26(8):2202–8.

    Article  PubMed  Google Scholar 

  160. Filaire E, Ferreira JP, Oliveira M, et al. Diurnal patterns of salivary alpha-amylase and cortisol secretion in female adolescent tennis players after 16 weeks of training. Psychoneuroendocrinology. 2013;38(7):1122–32.

    Article  CAS  PubMed  Google Scholar 

  161. Filaire E, Bernain X, Sagnol M, et al. Preliminary results on mood state, salivary testosterone: cortisol ratio and team performance in a professional soccer team. Eur J Appl Physiol. 2001;86(2):179–84.

    Article  CAS  PubMed  Google Scholar 

  162. Passelergue PA, Lac G. Salivary hormonal responses and performance changes during 15 weeks of mixed aerobic and weight training in elite junior wrestlers. J Strength Cond Res. 2012;26(11):3049–58.

    Article  PubMed  Google Scholar 

  163. Cormack SJ, Newton RU, McGuigan MR, et al. Neuromuscular and endocrine responses of elite players during an Australian rules football season. Int J Sports Physiol Perform. 2008;3(4):439–53.

    Article  PubMed  Google Scholar 

  164. McLellan CP, Lovell DI, Gass GC. Markers of postmatch fatigue in professional rugby league players. J Strength Cond Res. 2011;25(4):1030–9.

    Article  PubMed  Google Scholar 

  165. Tan A, Long Y. Relationships among salivary cortisol, RPE and training intensity in duet synchronised swimmers during pool session training. Br J Sports Med. 2010;44(14):i13.

    Article  Google Scholar 

  166. Kim KJ, Park S, Kim KH, et al. Salivary cortisol and immunoglobulin a responses during golf competition vs. practice in elite male and female junior golfers. J Strength Cond Res. 2010;24(3):852–8.

    Article  PubMed  Google Scholar 

  167. Hodgson CI, Draper N, McMorris T, et al. Perceived anxiety and plasma cortisol concentrations following rock climbing with differing safety rope protocols. Br J Sports Med. 2009;43(7):531–5.

    Article  CAS  PubMed  Google Scholar 

  168. Rahimi R, Ghaderi M, Mirzaei B, et al. Effects of very short rest periods on immunoglobulin A and cortisol responses to resistance exercise in men. J Hum Sport Exerc. 2010;5(2):146–57.

    Article  Google Scholar 

  169. Shariat A, Kargarfard M, Sharifi GR. The effect of heavy resistance exercise on circadian rhythm of salivary cortisol in male body building athletes. J Isfahan Med School. 2012;29(167):2400–12.

    CAS  Google Scholar 

  170. Leite R, Prestes J, Rosa C, et al. Acute effect of resistance training volume on hormonal responses in trained men. J Sport Med Phys Fit. 2011;51(2):322–8.

    CAS  Google Scholar 

  171. Moreira A, Arsati F, de Oliveira Lima Arsati YB, et al. Salivary cortisol in top-level professional soccer players. Eur J Appl Physiol. 2009;106(1):25–30.

    Article  CAS  PubMed  Google Scholar 

  172. Fry A, Lohnes C. Acute testosterone and cortisol responses to high power resistance exercise. Hum Physiol. 2010;36(4):457–61.

    Article  CAS  Google Scholar 

  173. Sinaei M, Kargarfard M, Talebi A, et al. The effects of an acute running exercise training session on changes in serum beta-endorphin and cortisol levels among male sprint runners. J Isfahan Med School. 2012;29(166).

  174. Pacini S, Branca J, Gulisano M, et al. Salivary testosterone and cortisol levels to assess conditioning training program in rugby union players. Med Sport (Roma). 2014;67(3):449–63.

    Google Scholar 

  175. Gaviglio CM, Osborne M, Kelly VG, et al. Salivary testosterone and cortisol responses to four different rugby training exercise protocols. Eur J Sport Sci. 2015;15(6):497–504.

    Article  PubMed  Google Scholar 

  176. Gaviglio CM, Cook CJ. The relationship between mid-week training measures of testosterone and cortisol concentrations and game outcome in professional rugby union matches. J Strength Cond Res. 2014;28(12):3447–52.

    Article  PubMed  Google Scholar 

  177. Crewther BT, Sanctuary CE, Kilduff LP, et al. The workout responses of salivary-free testosterone and cortisol concentrations and their association with the subsequent competition outcomes in professional rugby league. J Strength Cond Res. 2013;27(2):471–6.

    Article  PubMed  Google Scholar 

  178. Crewther BT, Al-Dujaili E, Smail NF, et al. Monitoring salivary testosterone and cortisol concentrations across an international sports competition: data comparison using two enzyme immunoassays and two sample preparations. Clin Biochem. 2013;46(4):354–8.

    Article  CAS  PubMed  Google Scholar 

  179. Casto KV, Elliott C, Edwards DA. Intercollegiate cross country competition: effects of warm-up and racing on salivary levels of cortisol and testosterone. Int J Exerc Sci. 2014;7(4):8.

    Google Scholar 

  180. Shariat A, Kargarfard M, Danaee M, et al. Intensive resistance exercise and circadian salivary testosterone concentrations among young male recreational lifters. J Strength Cond Res. 2015;29(1):151–8.

    Article  PubMed  Google Scholar 

  181. Hough J, Robertson C, Gleeson M. A 10-day training camp blunts exercise-induced salivary testosterone in elite level triathletes. Int J Sports Physiol Perform. 2015. doi:10.1123/ijspp.2014-0360.

    PubMed  Google Scholar 

  182. Hough J, Corney R, Kouris A, et al. Salivary cortisol and testosterone responses to high-intensity cycling before and after an 11-day intensified training period. J Sports Sci. 2013;31(14):1614–23.

    Article  PubMed  Google Scholar 

  183. Naghibi S, Asaadi A, Abdi M, et al. Correlation of overtraining psychic factors with testosterone and cortisol in men volleyball players. Adv Environ Biol. 2013;7(6):1202–4.

    Google Scholar 

  184. Strahler J, Mueller A, Rosenloecher F, et al. Salivary α-amylase stress reactivity across different age groups. Psychophysiology. 2010;47(3):587–95.

    Article  PubMed  Google Scholar 

  185. Kivlighan KT, Granger DA. Salivary α-amylase response to competition: relation to gender, previous experience, and attitudes. Psychoneuroendocrinology. 2006;31(6):703–14.

    Article  CAS  PubMed  Google Scholar 

  186. Mckune AJ, Bach CW, Semple SJ, et al. Salivary cortisol and α-amylase responses to repeated bouts of downhill running. Am J Hum Biol. 2014;26(6):850–5.

    Article  PubMed  Google Scholar 

  187. Adlerova L, Bartoskova A, Faldyna M. Lactoferrin: a review. Vet Med (Praha). 2008;53(9):457–68.

    CAS  Google Scholar 

  188. Rathnayake N, Åkerman S, Klinge B, et al. Salivary biomarkers for detection of systemic diseases. PLoS One. 2013;8(4):e61356.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  189. Tsai Minl, Li Tli, Chou Liwei, et al. Resting salivary levels of IgA and cortisol are significantly affected during intensive resistance training period in elite male weightlifters. J Strength Cond Res. 2011;26(8):2202–8.

  190. He CS, Tsai ML, Ko MH, et al. Relationships among salivary immunoglobulin A, lactoferrin and cortisol in basketball players during a basketball season. Eur J Appl Physiol. 2010;110(5):989–95.

    Article  CAS  PubMed  Google Scholar 

  191. Killer SC, Svendsen IS, Gleeson M. The influence of hydration status during prolonged endurance exercise on salivary antimicrobial proteins. Eur J Appl Physiol. 2015;115:1887–95.

    Article  CAS  PubMed  Google Scholar 

  192. Gillum TL, Keunnen MR, Castillo MN, et al. Exercise, but not acute sleep loss, increases salivary antimicrobial protein secretion. J Strength Cond Res. 2015;29(5):1359–66.

    Article  PubMed  Google Scholar 

  193. Deminice R, Sicchieri T, Payão P, et al. Blood and salivary oxidative stress biomarkers following an acute session of resistance exercise in humans. Int J Sports Med. 2010;31(9):599–603.

    Article  CAS  PubMed  Google Scholar 

  194. Su H, Velly AM, Salah MH, et al. Altered redox homeostasis in human diabetes saliva. J Oral Pathol Med. 2012;41(3):235–41.

    Article  CAS  PubMed  Google Scholar 

  195. Takane M, Sugano N, Ezawa T, et al. A marker of oxidative stress in saliva: association with periodontally-involved teeth of a hopeless prognosis. J Oral Sci. 2005;47(1):53–7.

    Article  CAS  PubMed  Google Scholar 

  196. Taylor NA, van den Heuvel AM, Kerry P, et al. Observations on saliva osmolality during progressive dehydration and partial rehydration. Eur J Appl Physiol. 2012;112(9):3227–37.

    Article  PubMed  Google Scholar 

  197. Michetti F, Bruschettini M, Frigiola A, et al. Saliva S100B in professional sportsmen: high levels at resting conditions and increased after vigorous physical activity. Clin Biochem. 2011;44(2):245–7.

    Article  CAS  PubMed  Google Scholar 

  198. Caswell SV, Cortes N, Mitchell K, et al. Development of nanoparticle-enabled protein biomarker discovery: implementation for saliva-based traumatic brain injury detection. Advances in Salivary Diagnostics. Springer; 2015. p. 121–9.

  199. Ouellet-Morin I, Danese A, Williams B, et al. Validation of a high-sensitivity assay for C-reactive protein in human saliva. Brain Behav Immun. 2011;25(4):640–6.

    Article  CAS  PubMed  Google Scholar 

  200. Punyadeera C, Dimeski G, Kostner K, et al. One-step homogeneous C-reactive protein assay for saliva. J Immunol Methods. 2011;373(1):19–25.

    Article  CAS  PubMed  Google Scholar 

  201. Ozmeriç N, Baydar T, Bodur A, et al. Level of neopterin, a marker of immune cell activation in gingival crevicular fluid, saliva, and urine in patients with aggressive periodontitis. J Periodontol. 2002;73(7):720–5.

    Article  PubMed  Google Scholar 

  202. Mirzaii-Dizgah I, Riahi E. Salivary high-sensitivity cardiac troponin T levels in patients with acute myocardial infarction. Oral Dis. 2013;19(2):180–4.

    Article  CAS  PubMed  Google Scholar 

  203. Mirzaii-Dizgah I, Hejazi SF, Riahi E, et al. Saliva-based creatine kinase MB measurement as a potential point-of-care testing for detection of myocardial infarction. Clin Oral Investig. 2012;16(3):775–9.

    Article  PubMed  Google Scholar 

  204. Ives SJ, Blegen M, Coughlin MA, et al. Salivary estradiol, interleukin-6 production, and the relationship to substrate metabolism during exercise in females. Eur J Appl Physiol. 2011;111(8):1649–58.

    Article  CAS  PubMed  Google Scholar 

  205. Cullen T, Thomas A, Webb R, et al. The relationship between interleukin-6 in saliva, venous and capillary plasma, at rest and in response to exercise. Cytokine. 2015;71(2):397–400.

    Article  CAS  PubMed  Google Scholar 

  206. Johnston DG, Alberti K, Nattrass M, et al. Hormonal and metabolic rhythms in Cushing’s syndrome. Metabolism. 1980;29(11):1046–52.

    Article  CAS  PubMed  Google Scholar 

  207. Shirtcliff EA, Granger DA, Schwartz E, et al. Use of salivary biomarkers in biobehavioral research: cotton-based sample collection methods can interfere with salivary immunoassay results. Psychoneuroendocrinology. 2001;26(2):165–73.

    Article  CAS  PubMed  Google Scholar 

  208. Kirschbaum C, Read GF, Hellhammer D. Assessment of hormones and drugs in saliva in biobehavioral research. Seattle: Hogrefe & Huber; 1992.

    Google Scholar 

  209. Gallagher P, Leitch MM, Massey AE, et al. Assessing cortisol and dehydroepiandrosterone (DHEA) in saliva: effects of collection method. J Psychopharmacol (Oxf). 2006;20(5):643–9.

    Article  CAS  Google Scholar 

  210. Strazdins L, Meyerkort S, Brent V, et al. Impact of saliva collection methods on sIgA and cortisol assays and acceptability to participants. J Immunol Methods. 2005;307(1):167–71.

    Article  CAS  PubMed  Google Scholar 

  211. Allgrove J, Oliveira M, Gleeson M. Stimulating whole saliva affects the response of antimicrobial proteins to exercise. Scand J Med Sci Sports. 2014;24(4):649–55.

    Article  CAS  PubMed  Google Scholar 

  212. Poll E-M, Kreitschmann-Andermahr I, Langejuergen Y, et al. Saliva collection method affects predictability of serum cortisol. Clin Chim Acta. 2007;382(1):15–9.

    Article  CAS  PubMed  Google Scholar 

  213. Beltzer EK, Fortunato CK, Guaderrama MM, et al. Salivary flow and alpha-amylase: collection technique, duration, and oral fluid type. Physiol Behav. 2010;101(2):289–96.

    Article  CAS  PubMed  Google Scholar 

  214. Christodoulides N, Mohanty S, Miller CS, et al. Application of microchip assay system for the measurement of C-reactive protein in human saliva. Lab Chip. 2005;5(3):261–9.

    Article  CAS  PubMed  Google Scholar 

  215. Miller S. Saliva testing–a nontraditional diagnostic tool. Clin Lab Sci. 1993;7(1):39–44.

    Google Scholar 

  216. Granger DA, Kivlighan KT, Fortunato C, et al. Integration of salivary biomarkers into developmental and behaviorally-oriented research: problems and solutions for collecting specimens. Physiol Behav. 2007;92(4):583–90.

    Article  CAS  PubMed  Google Scholar 

  217. Kivlighan KT, Granger DA, Schwartz EB. Blood contamination and the measurement of salivary progesterone and estradiol. Horm Behav. 2005;47(3):367–70.

    Article  CAS  PubMed  Google Scholar 

  218. Cook JD, Caplan YH, LoDico CP, et al. The characterization of human urine for specimen validity determination in workplace drug testing: a review. J Anal Toxicol. 2000;24(7):579–88.

    Article  CAS  PubMed  Google Scholar 

  219. Ladell W. The effects of water and salt intake upon the performance of men working in hot and humid environments. J Physiol. 1955;127(1):11–46.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  220. Montain SJ, Coyle EF. Influence of graded dehydration on hyperthermia and cardiovascular drift during exercise. J Appl Physiol. 1992;73(4):1340–50.

    CAS  PubMed  Google Scholar 

  221. Pitts G, Johnson R, Consolazio F. Work in the heat as affected by intake of water, salt and glucose. Am J Physiol. 1944;142(2):253–9.

    CAS  Google Scholar 

  222. Sawka MN, Francesconi RP, Young AJ, et al. Influence of hydration level and body fluids on exercise performance in the heat. JAMA. 1984;252(9):1165–9.

    Article  CAS  PubMed  Google Scholar 

  223. Allen PJ. Creatine metabolism and psychiatric disorders: does creatine supplementation have therapeutic value? Neurosci Biobehav Rev. 2012;36(5):1442–62.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  224. Schumann R. Über das Vorkommen von Kreatinin und Kreatin im menschlichen Schweiße. Res Exp Med (Berl). 1931;79(1):145–52.

    Google Scholar 

  225. Myers VC, Fine MS. Comparative disctribution of urea, creatinine, uric acid, and sugar in the blood and spinal fluid. J Biol Chem. 1919;37(2):239–44.

    CAS  Google Scholar 

  226. Liebig J. Kreatin und Kreatinin, Bestandtheile des Harns der Menschen. Journal für Praktische Chemie. 1847;40(1):288–92.

    Article  Google Scholar 

  227. Horbaczewskl J. Neue synthese des Kreatins. Wiener Med Jahrbucher. 1885;31:459.

    Google Scholar 

  228. Shaffer P. The excretion of kreatinin and kreatin in health and disease. Am J Physiol. 1908;23:1–17.

    CAS  Google Scholar 

  229. Carrieri M, Trevisan A, Bartolucci GB. Adjustment to concentration-dilution of spot urine samples: correlation between specific gravity and creatinine. Int Arch Occup Environ Health. 2000;74(1):63–7.

    Article  Google Scholar 

  230. Cone EJ, Caplan YH, Moser F, et al. Normalization of urinary drug concentrations with specific gravity and creatinine. J Anal Toxicol. 2009;33(1):1–7.

    Article  CAS  PubMed  Google Scholar 

  231. Clark LC, Thompson HL, Beck EI, et al. Excretion of creatine and creatinine by children. Am J Dis Child. 1951;81(6):774–83.

    CAS  Google Scholar 

  232. Forbes G, Bruining GJ. Urinary creatinine excretion and lean body mass. Am J Clin Nutr. 1976;29(12):1359–66.

    CAS  PubMed  Google Scholar 

  233. Rowe JW, Andres R, Tobin JD, et al. The effect of age on creatinine clearance in men: a cross-sectional and longitudinal study. J Gerontol. 1976;31(2):155–63.

    Article  CAS  PubMed  Google Scholar 

  234. Van Pilsum JF, Martin R, Kito E, et al. Determination of creatine, creatinine, arginine, guanidinoacetic acid, guanidine, and methyl-guanidine in biological fluids. J Biol Chem. 1956;222(1):225–36.

    Google Scholar 

  235. Wachter H, Hausen A, Grassmayr K. Increased urinary excretion of neopterin in patients with malignant tumors and with virus diseases (author’s transl)]. Hoppe-Seyler’s Zeitschrift für Physiologische Chemie. 1979;360(12):1957–60.

    CAS  PubMed  Google Scholar 

  236. de Castro MR, Di Marco GS, Arita DY, et al. Urinary neopterin quantification by reverse-phase high-performance liquid chromatography with ultraviolet detection. J Biochem Biophys Methods. 2004;59(3):275–83.

    Article  PubMed  CAS  Google Scholar 

  237. Tsikas D, Wolf A, Frölich JC. Simplified HPLC method for urinary and circulating creatinine. Clin Chem. 2004;50(1):201–3.

    Article  CAS  PubMed  Google Scholar 

  238. Paroni R, Arcelloni C, Fermo I, et al. Determination of creatinine in serum and urine by a rapid liquid-chromatographic method. Clin Chem. 1990;36(6):830–6.

    CAS  PubMed  Google Scholar 

  239. Tsikas D, Wolf A, Mitschke A, et al. GC–MS determination of creatinine in human biological fluids as pentafluorobenzyl derivative in clinical studies and biomonitoring: inter-laboratory comparison in urine with Jaffé, HPLC and enzymatic assays. J Chromatogr B. 2010;878(27):2582–92.

    Article  CAS  Google Scholar 

  240. Lindsay A, Healy J, Mills W, et al. Impact-induced muscle damage and urinary pterins in professional rugby: 7,8-dihydroneopterin oxidation by myoglobin. Scand J Med Sci Sports. 2015. doi:10.1111/sms.12436.

    PubMed  Google Scholar 

  241. Lindsay A, Lewis J, Scarrott C, et al. Changes in acute biochemical markers of inflammatory and structural stress in rugby union. J Sports Sci. 2014;33(9):882–91.

    Article  PubMed  Google Scholar 

  242. Ma S, Lieberman S, Turino GM, et al. The detection and quantitation of free desmosine and isodesmosine in human urine and their peptide-bound forms in sputum. Proc Natl Acad Sci. 2003;100(22):12941–3.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  243. Abeling NG, van Gennip AH, Overmars H, et al. Simultaneous determination of catecholamines and metanephrines in urine by HPLC with fluorometric detection. Clin Chim Acta. 1984;137(2):211–26.

    Article  CAS  PubMed  Google Scholar 

  244. Garn SM, Clark LCJ. Creatinine weight coefficient as measurement of obesity. J Appl Physiol. 1955;8:135–8.

    CAS  PubMed  Google Scholar 

  245. Baxmann AC, Ahmed MS, Marques NC, et al. Influence of muscle mass and physical activity on serum and urinary creatinine and serum cystatin C. Clin J Am Soc Nephrol. 2008;3(2):348–54.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  246. James GD, Sealey JE, Alderman M, et al. A longitudinal study of urinary creatinine and creatinine clearance in normal subjects race, sex, and age differences. Am J Hypertens. 1988;1(2):124–31.

    Article  CAS  PubMed  Google Scholar 

  247. Calloway DH, Margen S. Variation in endogenous nitrogen excretion and dietary nitrogen utilization as determinants of human protein requirement. J Nutr. 1971;101(2):205–16.

    CAS  PubMed  Google Scholar 

  248. Crim MC, Calloway D, Margen S. Creatine metabolism in men: urinary creatine and creatinine excretions with creatine feeding. J Nutr. 1975;105(4):428–38.

    CAS  PubMed  Google Scholar 

  249. Edwards O, Bayliss R, Millen S. Urinary creatinine excretion as an index of the completeness of 24-hour urine collections. Lancet. 1969;294(7631):1165–6.

    Article  Google Scholar 

  250. Bailey R, De Wardener H. Creatinine excretion. Lancet. 1970;295(7638):145.

    Article  Google Scholar 

  251. Ram MM, Reddy V. Variability in urinary creatinine. Lancet. 1970;296(7674):674.

    Article  Google Scholar 

  252. Refsum H, Strömme S. Urea and creatinine production and excretion in urine during and after prolonged heavy exercise. Scand J Clin Lab Invest. 1974;33(3):247–54.

    Article  CAS  PubMed  Google Scholar 

  253. Decombaz J, Reinhardt P, Anantharaman K, et al. Biochemical changes in a 100 km run: free amino acids, urea, and creatinine. Eur J Appl Physiol. 1979;41(1):61–72.

    Article  CAS  Google Scholar 

  254. Anderson RA, Polansky MM, Bryden NA, et al. Effect of exercise (running) on serum glucose, insulin, glucagon, and chromium excretion. Diabetes. 1982;31(3):212–6.

    Article  CAS  PubMed  Google Scholar 

  255. Paul G, DeLany J, Snook J, et al. Serum and urinary markers of skeletal muscle tissue damage after weight lifting exercise. Eur J Appl Physiol. 1989;58(7):786–90.

    Article  CAS  Google Scholar 

  256. World Anti-Doping Agency W. Reporting and evaluation guidance for testosterone, epitestosterone, T/E ratio and other endogenous steroids. WADA Technical Document–TD2004EAAS. 2004. p. 1–11.

  257. Osborne C, Stevens J. Urine specific gravity, refractive index, or osmolality: which one would you choose. In: Osborne CA, Stevens JB, editors. Leverkusen; Bayer Corporation: 1999.

  258. Miller RC, Brindle E, Holman DJ, et al. Comparison of specific gravity and creatinine for normalizing urinary reproductive hormone concentrations. Clin Chem. 2004;50(5):924–32.

    Article  CAS  PubMed  Google Scholar 

  259. Berlin A, Alessio L, Sesana G, et al. Problems concerning the usefulness of adjustment of urinary cadmium for creatinine and specific gravity. Int Arch Occup Environ Health. 1985;55(2):107–11.

    Article  CAS  PubMed  Google Scholar 

  260. Suwazono Y, Åkesson A, Alfven T, et al. Creatinine versus specific gravity-adjusted urinary cadmium concentrations. Biomarkers. 2005;10(2–3):117–26.

    Article  CAS  PubMed  Google Scholar 

  261. Simerville JA, Maxted WC, Pahira JJ. Urinalysis: a comprehensive review. Am Fam Physician. 2005;71(6):1153–62.

    PubMed  Google Scholar 

  262. Osterberg KL, Horswill CA, Baker LB. Pregame urine specific gravity and fluid intake by National Basketball Association players during competition. J Athl Train. 2009;44(1):53–7.

    Article  PubMed  PubMed Central  Google Scholar 

  263. Silva RP, Mündel T, Altoé JL, et al. Preexercise urine specific gravity and fluid intake during one-hour running in a thermoneutral environment–a randomized cross-over study. J Sports Sci Med. 2010;9(3):464–71.

    PubMed  PubMed Central  Google Scholar 

  264. Levine L, Fahy JP. Evaluation of urinary lead concentrations. I. The significance of the specific gravity. J Ind Hyg Toxicol. 1945;27:217–23.

  265. Goldberger B, Loewenthal B, Darwin WD, et al. Intrasubject variation of creatinine and specific gravity measurements in consecutive urine specimens of heroin users. Clin Chem. 1995;41(1):116–7.

    CAS  PubMed  Google Scholar 

  266. Araki S, Sata F, Murata K. Adjustment for urinary flow rate: an improved approach to biological monitoring. Int Arch Occup Environ Health. 1990;62(6):471–7.

    Article  CAS  PubMed  Google Scholar 

  267. Barber T, Wallis G. Correction of urinary mercury concentration by specific gravity, osmolality, and creatinine. J Occup Environ Med. 1986;28(5):354–9.

    CAS  Google Scholar 

  268. Kavouras SA. Assessing hydration status. Curr Opin Clin Nutr. 2002;5(5):519–24.

    Article  Google Scholar 

  269. Stover EA, Petrie HJ, Passe D, et al. Urine specific gravity in exercisers prior to physical training. Appl Physiol Nutr Metab. 2006;31(3):320–7.

    Article  PubMed  Google Scholar 

  270. Parikh CR, Gyamlani GG, Carvounis CP. Screening for microalbuminuria simplified by urine specific gravity. Am J Nephrol. 2002;22(4):315–9.

    Article  PubMed  Google Scholar 

  271. Voinescu GC, Shoemaker M, Moore H, et al. The relationship between urine osmolality and specific gravity. Am J Med Sci. 2002;323(1):39–42.

    Article  PubMed  Google Scholar 

  272. Alessio L, Berlin A, Dell’Orto A, et al. Reliability of urinary creatinine as a parameter used to adjust values of urinary biological indicators. Int Arch Occup Environ Health. 1985;55(2):99–106.

    Article  CAS  PubMed  Google Scholar 

  273. Elkins HB, Pagnotto LD, Smith HL. Concentration adjustments in urinalysis. Am Ind Hyg Assoc J. 1974;35(9):559–65.

    Article  CAS  PubMed  Google Scholar 

  274. Sauer M, Paulson R. Utility and predictive value of a rapid measurement of urinary pregnanediol glucuronide by enzyme immunoassay in an infertility practice. Fertil Steril. 1991;56(5):823–6.

    Article  CAS  PubMed  Google Scholar 

  275. Sherwood L. Human physiology: from cells to systems, 7th ed. Brooks/Cole, a part of Cengage Learning Inc; 2008.

  276. Kirchmann H, Pettersson S. Human urine-chemical composition and fertilizer use efficiency. Fert Res. 1994;40(2):149–54.

    Article  Google Scholar 

  277. Uberoi H, Dugal J, Kasthuri A, et al. Acute renal failure in severe exertional rhabdomyolysis. J Assoc Physicians India. 1991;39(9):677–9.

    CAS  PubMed  Google Scholar 

  278. Suzuki K, Totsuka M, Nakaji S, et al. Endurance exercise causes interaction among stress hormones, cytokines, neutrophil dynamics, and muscle damage. J Appl Physiol. 1999;87(4):1360–7.

    CAS  PubMed  Google Scholar 

  279. Totsuka M, Nakaji S, Suzuki K, et al. Break point of serum creatine kinase release after endurance exercise. J Appl Physiol. 2002;93(4):1280–6.

    Article  CAS  PubMed  Google Scholar 

  280. Sayers SP, Peters BT, Knight CA, et al. Short-term immobilization after eccentric exercise. Part I: contractile properties. Med Sci Sports Exerc. 2003;35(5):753–61.

    Article  PubMed  Google Scholar 

  281. Lindsay A, Lewis J, Gill N, et al. Effect of varied recovery interventions on markers of psychophysiological stress in professional rugby union. Eur J Sport Sci. 2015. doi:10.1080/17461391.2015.1029982.

  282. Lin AC, Lin C, Wang T, et al. Rhabdomyolysis in 119 students after repetitive exercise. Br J Sports Med. 2005;39(1):e3.

    Article  PubMed  PubMed Central  Google Scholar 

  283. Sugama K, Suzuki K, Yoshitani K, et al. IL-17, neutrophil activation and muscle damage following endurance exercise. Exerc Immunol Rev. 2012;18:116–27.

    PubMed  Google Scholar 

  284. Lindsay A, Carr S, Draper N, et al. Urinary myoglobin quantification by high-performance liquid chromatography: an alternative measurement for exercise-induced muscle damage. Anal Biochem. 2015;491:37–42.

    Article  CAS  PubMed  Google Scholar 

  285. Lindsay A, Carr S, Othman MI, et al. The physiological and mononuclear cell activation response to cryotherapy following a mixed martial arts contest: a pilot study. Pteridines. 2015. doi:10.1515/pterid-2015-0010.

    Google Scholar 

  286. Bird SP, Tarpenning KM, Marino FE. Liquid carbohydrate/essential amino acid ingestion during a short-term bout of resistance exercise suppresses myofibrillar protein degradation. Metabolism. 2006;55(5):570–7.

    Article  CAS  PubMed  Google Scholar 

  287. Wilson JM, Lowery RP, Joy JM, et al. The effects of 12 weeks of beta-hydroxy-beta-methylbutyrate free acid supplementation on muscle mass, strength, and power in resistance-trained individuals: a randomized, double-blind, placebo-controlled study. Eur J Appl Physiol. 2014;114(6):1217–27.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  288. Wilson JM, Lowery RP, Joy JM, et al. β-Hydroxy-β-methylbutyrate free acid reduces markers of exercise-induced muscle damage and improves recovery in resistance-trained men. Br J Nutr. 2013;110(03):538–44.

    Article  CAS  PubMed  Google Scholar 

  289. Colombani PC, Kovacs E, Frey-Rindova P, et al. Metabolic effects of a protein-supplemented carbohydrate drink in marathon runners. Int J Sport Nutr. 1999;9(2):181–201.

    Article  CAS  PubMed  Google Scholar 

  290. Lukaski H, Mendez J, Buskirk E, et al. Relationship between endogenous 3-methylhistidine excretion and body composition. Am J Physiol Endocrinol Metab. 1981;240(3):E302–7.

    CAS  Google Scholar 

  291. Schoedon G, Troppmair J, Adolf G, et al. Interferon-γ enhances biosynthesis of pterins in peripheral blood mononuclear cells by induction of GTP-cyclohydrolase I activity. J Interferon Res. 1986;6(6):697–703.

    Article  CAS  PubMed  Google Scholar 

  292. Schoenborn JR, Wilson CB. Regulation of interferon-γ during innate and adaptive immune responses. Adv Immunol. 2007;96:41–101.

    Article  CAS  PubMed  Google Scholar 

  293. Jakeman P, Weller A, Warrington G. Cellular immune activity in response to increased training of elite oarsmen prior to Olympic competition. J Sports Sci. 1995;13(3):207–11.

    Article  CAS  PubMed  Google Scholar 

  294. Widner B, Mayr C, Wirleitner B, et al. Oxidation of 7, 8-dihydroneopterin by hypochlorous acid yields neopterin. Biochem Biophys Res Commun. 2000;275(2):307–11.

    Article  CAS  PubMed  Google Scholar 

  295. Suzuki K, Nakaji S, Yamada M, et al. Systemic inflammatory response to exhaustive exercise. Cytokine kinetics. Exerc Immunol Rev. 2002;8:6–48.

    PubMed  Google Scholar 

  296. Weinstock C, König D, Harnischmacher R, et al. Effect of exhaustive exercise stress on the cytokine response. Med Sci Sports Exerc. 1997;29(3):345–54.

    Article  CAS  PubMed  Google Scholar 

  297. Sugama K, Suzuki K, Yoshitani K, et al. Urinary excretion of cytokines versus their plasma levels after endurance exercise. Exerc Immunol Rev. 2013;19:29–48.

    PubMed  Google Scholar 

  298. Gouarné C, Groussard C, Gratas-Delamarche A, et al. Overnight urinary cortisol and cortisone add new insights into adaptation to training. Med Sci Sports Exerc. 2005;37(7):1157–67.

    Article  PubMed  Google Scholar 

  299. Blazevich AJ, Giorgi A. Effect of testosterone administration and weight training on muscle architecture. Med Sci Sports Exerc. 2001;33(10):1688–93.

    Article  CAS  PubMed  Google Scholar 

  300. Robinson N, Castella V, Saudan C, et al. Elevated and similar urinary testosterone/epitestosterone ratio in all samples of a competition testing: Suspicion of a manipulation. Forensic Sci Int. 2006;163(1):148–51.

    Article  CAS  PubMed  Google Scholar 

  301. Neary J, Malbon L, McKenzie D. Relationship between serum, saliva and urinary cortisol and its implication during recovery from training. J Sci Med Sport. 2002;5(2):108–14.

    Article  CAS  PubMed  Google Scholar 

  302. Hall C. Essential biochemistry and physiology of (NT-pro) BNP. Eur J Heart Fail. 2004;6(3):257–60.

    Article  CAS  PubMed  Google Scholar 

  303. Tsuruda T, Boerrigter G, Huntley BK, et al. Brain natriuretic peptide is produced in cardiac fibroblasts and induces matrix metalloproteinases. Circ Res. 2002;91(12):1127–34.

    Article  CAS  PubMed  Google Scholar 

  304. Lubien E, DeMaria A, Krishnaswamy P, et al. Utility of B-natriuretic peptide in detecting diastolic dysfunction comparison with Doppler velocity recordings. Circulation. 2002;105(5):595–601.

    Article  CAS  PubMed  Google Scholar 

  305. Corsetti R, Lombardi G, Barassi A, et al. Cardiac indexes, cardiac damage biomarkers and energy expenditure in professional cyclists during the Giro d’Italia 3-weeks stage race. Biochemia Medica. 2012;22(2):237–46.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  306. Cortés R, Portolés M, Salvador A, et al. Diagnostic and prognostic value of urine NT-proBNP levels in heart failure patients. Eur J Heart Fail. 2006;8(6):621–7.

    Article  PubMed  CAS  Google Scholar 

  307. Michielsen EC, Bakker JA, Van Kimmenade RR, et al. The diagnostic value of serum and urinary NT-proBNP for heart failure. Ann Clin Biochem. 2008;45(4):389–94.

    Article  CAS  PubMed  Google Scholar 

  308. Margonis K, Fatouros IG, Jamurtas AZ, et al. Oxidative stress biomarkers responses to physical overtraining: implications for diagnosis. Free Radic Biol Med. 2007;43(6):901–10.

    Article  CAS  PubMed  Google Scholar 

  309. Rodríguez-Rodríguez A, Egea-Guerrero JJ, León-Justel A, et al. Role of S100B protein in urine and serum as an early predictor of mortality after severe traumatic brain injury in adults. Clin Chim Acta. 2012;414:228–33.

    Article  PubMed  CAS  Google Scholar 

  310. Straume-Næsheim TM, Andersen TE, Jochum M, et al. Minor head trauma in soccer and serum levels of S100B. Neurosurgery. 2008;62(6):1297.

    Article  PubMed  Google Scholar 

  311. Undén J, Bellner J, Eneroth M, et al. Raised serum S100B levels after acute bone fractures without cerebral injury. J Trauma. 2005;58(1):59.

    Article  PubMed  Google Scholar 

  312. Cadore E, Lhullier F, Brentano M, et al. Correlations between serum and salivary hormonal concentrations in response to resistance exercise. J Sports Sci. 2008;26(10):1067–72.

    Article  PubMed  Google Scholar 

  313. Filaire E, Lac G. Dehydroepiandrosterone (DHEA) rather than testosterone shows saliva androgen responses to exercise in elite female handball players. Int J Sports Med. 2000;21(1):17–20.

    Article  CAS  PubMed  Google Scholar 

  314. MacKinnon LT, Jenkins DG. Decreased salivary immunoglobulins after intense interval exercise before and after training. Med Sci Sports Exerc. 1993;25(6):678–83.

    Article  CAS  PubMed  Google Scholar 

  315. West NP, Pyne DB, Kyd JM, et al. The effect of exercise on innate mucosal immunity. Br J Sports Med. 2010;44(4):227–31.

    Article  CAS  PubMed  Google Scholar 

  316. Ely BR, Cheuvront SN, Kenefick RW, et al. Assessment of extracellular dehydration using saliva osmolality. Eur J Appl Physiol. 2014;114(1):85–92.

    Article  CAS  PubMed  Google Scholar 

  317. Cornish SM, Candow DG, Jantz NT, et al. Conjugated linoleic acid combined with creatine monohydrate and whey protein supplementation during strength training. Int J Sport Nutr. 2009;19(1):79.

    CAS  Google Scholar 

  318. Lindsay A, Draper N, Lewis J, et al. Positional demands of professional rugby. Eur J Sport Sci. 2015;15(6):480–7. doi:10.1080/17461391.2015.1025858.

    Article  PubMed  Google Scholar 

  319. Rogerson S, Riches CJ, Jennings C, et al. The effect of five weeks of Tribulus terrestris supplementation on muscle strength and body composition during preseason training in elite rugby league players. J Strength Cond Res. 2007;21(2):348–53.

    PubMed  Google Scholar 

  320. Chen CK, Mohamad WMZW, Ooi FK, et al. Supplementation of Eurycoma Longifolia Jack extract for 6 Weeks does not affect urinary testosterone: epitestosterone ratio, liver and renal functions in male recreational athletes. Int J Prev Med. 2014;5(6):728–33.

    PubMed  PubMed Central  Google Scholar 

  321. Corvillo M, Timón R, Maynar M, et al. Urinary excretion of steroid hormones after a female handball match excreción urinaria de hormonas esteroideas tras un partido de balonmano femenino. Rev Int Med Cienc Act Fís Deporte. 2013;13(52):737–47.

    Google Scholar 

  322. Maynar M, Timon R, González A, et al. SHBG, plasma, and urinary androgens in weight lifters after a strength training. J Physiol Biochem. 2010;66(2):137–42.

    Article  CAS  PubMed  Google Scholar 

  323. Rouveix M, Duclos M, Gouarne C, et al. The 24 h urinary cortisol/cortisone ratio and epinephrine/norepinephrine ratio for monitoring training in young female tennis players. Int J Sports Med. 2006;27(11):856–63.

    Article  CAS  PubMed  Google Scholar 

  324. Gillies EM, Putman CT, Bell GJ. The effect of varying the time of concentric and eccentric muscle actions during resistance training on skeletal muscle adaptations in women. Eur J Appl Physiol. 2006;97(4):443–53.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Angus Lindsay.

Ethics declarations

Funding

No sources of funding were used to assist in the preparation of this article.

Conflict of interest

Angus Lindsay and Joseph Costello declare that they have no conflicts of interest relevant to the content of this review.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lindsay, A., Costello, J.T. Realising the Potential of Urine and Saliva as Diagnostic Tools in Sport and Exercise Medicine. Sports Med 47, 11–31 (2017). https://doi.org/10.1007/s40279-016-0558-1

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40279-016-0558-1

Keywords

Navigation