Skip to main content
Log in

Management of Lumbar Spondylolysis in Athletes: Role of Imaging

  • Sports Imaging (J Linklater, Section Editor)
  • Published:
Current Radiology Reports Aims and scope Submit manuscript

Abstract

Purpose of review

Spondylolysis is a broad term, with advances in imaging enabling more accurate diagnosis of the activity and severity of a lesion. This review discusses the role of different imaging modalities in the diagnosis and management of lumbar spondylolysis in athletes.

Recent Findings

Magnetic resonance imaging (MRI) has diagnostic and practical advantages over other imaging modalities and is particularly useful for detecting early stages of bone stress, including pre-symptomatic screening for active lumbar bone stress injuries. Whilst computed tomography remains the best imaging technique to visualise cortical breaches, specialised MRI sequences offer a viable alternative to detect active bone stress and chronic non-united defects.

Summary

Imaging provides important information for the clinical management of athletes with lumbar spondylolysis. Roles for imaging, in particular MRI, include: (a) proactive screening and early detection, (b) diagnosis of a symptomatic lesion and (c) monitor healing and readiness to return to sport.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

Recently published papers of particular interest have been highlighted as: • Of importance

  1. Wiltse LL, Widell EH, Jackson DW. Fatigue fracture: the basic lesion in the isthmic spondylolisthesis. J Bone Joint Surg Am. 1975;10(4):566.

    Google Scholar 

  2. Kobayashi A, Kobayashi T, Kato K, Higuchi H, Takagishi K. Diagnosis of radiographically occult lumbar spondylolysis in young athletes by magnetic resonance imaging. Am J Sports Med. 2013;41(1):169–76. https://doi.org/10.1177/0363546512464946.

    Article  PubMed  Google Scholar 

  3. Herman MJ, Pizzutillo PD. Spondylolysis and spondylolisthesis in the child and adolescent: a new classification. Clin Orthop Relat R. 2005;434:46–54. https://doi.org/10.1097/01.blo.0000162992.25677.7b.

    Article  Google Scholar 

  4. Miyagi R, Sairyo K, Sakai T, Yoshioka H, Yasui N, Dezawa A. Two types of laminolysis in adolescent athletes. J Orthop Traumatol. 2012;13(4):225–8. https://doi.org/10.1007/s10195-012-0206-y.

    Article  PubMed  PubMed Central  Google Scholar 

  5. Standaert CJ, Herring SA. Spondylolysis: a critical review. Br J Sports Med. 2000;34(6):415–22.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  6. • Borg B, Modic MT, Obuchowski N, Cheah G. Pedicle marrow signal hyperintensity on short tau inversion recovery- and T2-weighted images: Prevalence and relationship to clinical symptoms. Am J Neuroradiol. 2011;32(9):1624-31. https://doi.org/10.3174/ajnr.a2588. Study of MRI findings in low back pain patients demonstrating associations between signal intensity, bone stress continuum stage and clinical symptoms.

  7. Pascal-Moussellard H, Broizat M, Cursolles JC, Rouvillain JL, Catonne Y. Association of unilateral isthmic spondylolysis with lamina fracture in an athlete: case report and literature review. Am J Sports Med. 2005;33(4):591–5. https://doi.org/10.1177/0363546504270997.

    Article  PubMed  Google Scholar 

  8. Sakai T, Goda Y, Tezuka F, Takata Y, Higashino K, Sato M, et al. Characteristics of lumbar spondylolysis in elementary school age children. Eur Spine J. 2016;25(2):602–6.

    Article  PubMed  Google Scholar 

  9. Miki T, Tamura T, Senzoku F, Kotani H, Hara T, Masuda T. Congenital laminar defect of the upper lumbar spine associated with pars defect. A report of eleven cases. Spine. 1991;16(3):353–5.

    Article  PubMed  CAS  Google Scholar 

  10. Fredrickson B, Baicer D, McHolick W, Yuan H, Lubicky J. The natural history of spondylolysis and spondylolithesis. J Bone Joint Surg Am. 1984;66A(5):699–707.

    Article  Google Scholar 

  11. Leone A, Cianfoni A, Cerase A, Magarelli N, Bonomo L. Lumbar spondylolysis: a review. Skelet Radiol. 2011;40(6):683–700. https://doi.org/10.1007/s00256-010-0942-0.

    Article  Google Scholar 

  12. Brooks B, Southam S, Mlady G, Logan J, Rosette M. Lumbar spine spondylolysis in the adult population: using computed tomography to evaluate the possibility of adult onset lumbar spondylolysis as a cause of back pain. Skelet Radiol. 2010;39:669–73.

    Article  Google Scholar 

  13. Been E, Ling L, Hunter D, Kalichman L. Geometry of the vertebral bodies and the intervertebral discs in lumbar segments adjacent to spondylolysis and spondylolisthesis: pilot study. Eur Spine J. 2011;20:1159–65.

    Article  PubMed  Google Scholar 

  14. Sakai T, Sairyo K, Suzue N, Kosaka H, Yasui N. Incidence and etiology of lumbar spondylolysis: review of the literature. J Orthop Sci. 2010;15(3):281–8. https://doi.org/10.1007/s00776-010-1454-4.

    Article  PubMed  Google Scholar 

  15. • Klein G, Mehlman CT, McCarty M. Nonoperative treatment of spondylolysis and grade I spondylolisthesis in children and young adults: a meta-analysis of observational studies. J Pediatric Orthoped. 2009;29(2):146–56. https://doi.org/10.1097/bpo.0b013e3181977fc5. Meta analysis supporting non-operative treatment for spondylolysis.

  16. Micheli LJ, Wood R. Back pain in young athletes: significant differences from adults in causes and patterns. Arch Pediatr Adolescent Med. 1995;149(1):15–8.

    Article  CAS  Google Scholar 

  17. Ruiz-Cotorro A, Balius-Matas R, Estruch-Massana A, Angulo JV. Spondylolysis in young tennis players. Br J Sports Med. 2006;40(5):441–6.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  18. Ciullo JV, Jackson DW. Pars interarticularis stress reaction, spondylolysis, and spondylolisthesis in gymnasts. Clin Sports Med. 1985;4(1):95–110.

    PubMed  CAS  Google Scholar 

  19. Fellander-Tsai L, Micheli L. Treatment of spondylolysis with external electrical stimulation and bracing in adolescent athletes: a report of two cases. Clin J Sport Med. 1998;8(3):232–4.

    Article  PubMed  CAS  Google Scholar 

  20. Gregory P, Batt M, Kerslake R. Comparing spondylolysis in cricketers and soccer players. Br J Sports Med. 2004;38:737–42.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  21. Loud K, Micheli L, Bristol S, Austin S, Gordon C. Family history predicts stress fracture in active female adolescents. Pediatrics. 2007;120(2):364–72.

    Article  Google Scholar 

  22. Rossi F. Spondylolysis, spondylolisthesis and sports. J Sports Med Phys Fit. 1988;18(4):317–40.

    Google Scholar 

  23. Schmitt H, Brocai D, Carstens C. Long-term review of the lumbar spine in javelin throwers. J Bone Joint Surg Br. 2001;83(3):324–7.

    Article  PubMed  CAS  Google Scholar 

  24. Elliott BC, Hardcastle PH, Burnett AE, Foster DH. The influence of fast bowling and physical factors on radiologic features in high performance young fast bowlers. Sports Med Train Rehab. 1992;3(2):113–30. https://doi.org/10.1080/15438629209517008.

    Article  Google Scholar 

  25. Engstrom C, Walker D, Kippers V, Mehnert A. Quadratus lumborum asymmetry and L4 pars injury in fast bowlers: a prospective MR study. Med Sci Sports Exerc. 2007;39(6):910–7.

    Article  PubMed  Google Scholar 

  26. Foster D, John D, Elliott B, Ackland T, Fitch K. Back injuries to fast bowlers in cricket: a prospective study. Br J Sports Med. 1989;23(3):150–4. https://doi.org/10.1136/bjsm.23.3.150.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  27. Kountouris A, Portus M, Cook J. Cricket fast bowlers without low back pain have larger quadratus lumborum asymmetry than injured bowlers. Clin J Sport Med. 2013;23(4):300–4. https://doi.org/10.1097/JSM.0b013e318280ac88.

    Article  PubMed  Google Scholar 

  28. Kountouris A, Portus M, Cook J. Quadratus lumborum asymmetry and lumbar spine injury in adolescent cricket fast bowlers. J Sci Med Sport. 2012;15:393–7.

    Article  PubMed  Google Scholar 

  29. O’Sullivan P, Kountouris A, Press J, Reese M. Low back pain. In: Brukner P, Clarson B, Cook J, Cools A, Crossley K, Hutchinson M, et al., editors. Brukner & Khan’s clinical sports medicine: injuries. 5th ed. Sydney: McGraw-Hill Education; 2017. p. 521–66.

    Google Scholar 

  30. Mallee WH, Weel H, van Dijk CN, van Tulder MW, Kerkhoffs GM, Lin CW. Surgical versus conservative treatment for high-risk stress fractures of the lower leg (anterior tibial cortex, navicular and fifth metatarsal base): a systematic review. Br J Sports Med. 2015;49(6):370–6. https://doi.org/10.1136/bjsports-2013-093246.

    Article  PubMed  Google Scholar 

  31. d’Hemecourt P, Zurakowski D, Kriemler S, Micheli L. Spondylolysis: returning the athlete to sports participation with brace treatment. Orthopedics. 2002;25(6):653–7.

    PubMed  Google Scholar 

  32. • Sairyo K, Sakai T, Yasui N. Conservative management of lumbar spondylolysis in childhood and adolescence. J Bone Joint Surg Am. 2009;91(2):206–09. Study demonstrating non-operative healing potential of lesions differs by bone stress continuum stage.

  33. Sairyo K, Sakai T, Yasui N, Dezawa A. Conservative treatment for pediatric lumbar spondylolysis to achieve bone healing using a hard brace: what type and how long? J Neurosurg Spine. 2012;16(6):610–4.

    Article  PubMed  Google Scholar 

  34. • Sakai T, Sairyo K, Mima S, Yasui N. Significance of magnetic resonance imaging signal change in the pedicle in the management of pediatric lumbar spondylolysis. Spine. 2010;35(14):641–45. Study demonstrating utility of MRI for monitoring healing and therefore informing management.

  35. Ward CV, Latimer B. Human evolution and the development of spondylolysis. Spine. 2005;30(16):1808–14.

    Article  PubMed  Google Scholar 

  36. Cyron B, Hutton W. The fatigue strength of the lumbar neural arch in spondylolysis. J Bone Joint Surg Br. 1978;60(2):234–8.

    Article  PubMed  Google Scholar 

  37. Bugg WG, Lewis M, Juette A, Cahir JG, Toms AP. Lumbar lordosis and pars interarticularis fractures: a case-control study. Skelet Radiol. 2012;41(7):817–22. https://doi.org/10.1007/s00256-011-1296-y.

    Article  Google Scholar 

  38. Glazier PS. Is the ‘crunch factor’an important consideration in the aetiology of lumbar spine pathology in cricket fast bowlers? Sports Med. 2010;40(10):809–15.

    Article  PubMed  Google Scholar 

  39. Blanch P, Orchard J, Kountouris A, Sims K, Beakley D. Different tissue type categories of overuse injuries to cricket fast bowlers have different severity and incidence which varies with age. SA J Sports Med. 2015;27(4):108–13. https://doi.org/10.17159/2078-516x/2015/v27i4a436.

    Article  Google Scholar 

  40. Fournier P-E, Rizzoli R, Slosman D-O, Theintz G, Bonjour J-P. Asynchrony between the rates of standing height gain and bone mass accumulation during puberty. Osteoporos Int. 1997;7(6):525–32. https://doi.org/10.1007/bf02652557.

    Article  PubMed  CAS  Google Scholar 

  41. Kim HJ, Green DW. Spondylolysis in the adolescent athlete. Curr Opin Pediatr. 2011;23(1):68–72.

    Article  PubMed  Google Scholar 

  42. Cyron BM, Hutton WC. Variations in the amount and distribution of cortical bone across the partes interarticulares of L5. A predisposing factor in spondylolysis? Spine. 1979;4(2):163–7.

    Article  PubMed  CAS  Google Scholar 

  43. Chung S-B, Lee S, Kim H, Lee S-H, Kim ES, Eoh W. Significance of interfacet distance, facet joint orientation, and lumbar lordosis in spondylolysis. Clin Anat. 2012;25(3):391–7. https://doi.org/10.1002/ca.21222.

    Article  PubMed  Google Scholar 

  44. Rankine JJ, Dickson RA. Unilateral spondylolysis and the presence of facet joint tropism. Spine. 2010;35(21):E1111–4. https://doi.org/10.1097/BRS.0b013e3181de8b72.

    Article  PubMed  Google Scholar 

  45. Bajwa NS, Toy JO, Ahn NU. L5 pedicle length is increased in subjects with spondylolysis: an anatomic study of 1072 cadavers. Clin Orthopaedics Relat Res. 2012;470(11):3202–6.

    Article  Google Scholar 

  46. Miyauchi A, Baba I, Sumida T, Manabe H, Hayashi Y, Ochi M. Relationship between the histological findings of spondylolytic tissue, instability of the loose lamina, and low back pain. Spine. 2008;33(6):687–93. https://doi.org/10.1097/BRS.0b013e3181669548.

    Article  PubMed  Google Scholar 

  47. Hollenberg GM, Beattie PF, Meyers SP, Weinberg EP, Adams MJ. Stress reactions of the lumbar pars interarticularis: the development of a new MRI classification system. Spine. 2002;27(2):181–6.

    Article  PubMed  Google Scholar 

  48. Morita T, Ikata T, Katoh S, Miyake R. Lumbar spondylolysis in children and adolescents. J Bone Joint Surg Br. 1995;77(4):620–5.

    Article  PubMed  CAS  Google Scholar 

  49. Sairyo K, Sakai T, Yasui N. Conservative treatment of lumbar spondylolysis in childhood and adolescence: the radiological signs which predict healing. J Bone Joint Surg Br. 2009;91(2):206–9. https://doi.org/10.1302/0301-620X.91B2.21256.

    Article  PubMed  CAS  Google Scholar 

  50. Sys J, Michielsen J, Bracke P, Martens M, Verstreken J. Nonoperative treatment of active spondylolysis in elite athletes with normal X-ray findings: literature review and results of conservative treatment. Eur Spine J. 2001;10(6):498–504. https://doi.org/10.1007/s005860100326.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  51. Kurd MF, Patel D, Norton R, Picetti G, Friel B, Vaccaro AR. Nonoperative treatment of symptomatic spondylolysis. Clin Spine Surg. 2007;20(8):560–4. https://doi.org/10.1097/BSD.0b013e31803dcddd.

    Article  Google Scholar 

  52. Wu SS, Lee CH, Chen PQ. Operative repair of symptomatic spondylolysis following a positive response to diagnostic pars injection. J Spinal Disord. 1999;12(1):10–6.

    Article  PubMed  CAS  Google Scholar 

  53. Crewe H, Elliot B, Couanis G, Campbell A, Alderson J. The lumbar spine of the young cricket fast bowler: an MRI study. Med Sci Sports Exerc. 2012;15:190–4. https://doi.org/10.1249/MSS.0b013e31827973d1.

    Article  Google Scholar 

  54. Gregg CD, Dean S, Schneiders AG. Variables associated with active spondylolysis. Phys Ther Sport. 2009;10(4):121–4.

    Article  PubMed  Google Scholar 

  55. Masci L, Pike J, Malara F, Phillips B, Bennell K, Brukner P. Use of the one-legged hyperextension test and magnetic resonance imaging in the diagnosis of active spondylolysis. Br J Sports Med. 2006;40(11):940–6.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  56. Zukotynski K, Curtis C, Grant FD, Micheli L, Treves ST. The value of SPECT in the detection of stress injury to the pars interarticularis in patients with low back pain. J Orthop Surg Res. 2010;5:13. https://doi.org/10.1186/1749-799X-5-13.

    Article  PubMed  PubMed Central  Google Scholar 

  57. Cross T. Diagnostic imaging: radiation exposure and safety considerations. Med Today. 2012;13(9):72–5.

    Google Scholar 

  58. Mushtaq R, Porrino J, Pérez-Carrillo GJG. Imaging of spondylolysis: the evolving role of magnetic resonance imaging. PM&R. 2018;10(6):675–80. https://doi.org/10.1016/j.pmrj.2018.02.001.

    Article  Google Scholar 

  59. • Campbell R, Grainger A, Hide I, Papastefanou S, Greenough C. Juvenile spondylolysis: a comparative analysis of CT, SPECT and MRI. Skelet Radiol. 2005;34:63–73. https://doi.org/10.1007/s00256-004-0878-3. Study demonstrating MRI (T1-W and STIR) comparable to CT and CT/SPECT, and therefore preferred as first-line imaging modality.

  60. • Ang EC, Robertson AF, Malara FA, O’Shea T, Roebert JK, Schneider ME et al. Diagnostic accuracy of 3-T magnetic resonance imaging with 3D T1 VIBE versus computer tomography in pars stress fracture of the lumbar spine. Skelet Radiol. 2016;45(11):1533–40. https://doi.org/10.1007/s00256-016-2475-7. Study demonstrating MRI (3-T with thin-slice 3D T1 VIBE) comparable to CT, and therefore preferred as first-line imaging modality.

  61. Ganiyusufoglu A, Onat L, Karatoprak O, Enercan M, Hamzaoglu A. Diagnostic accuracy of magnetic resonance imaging versus computed tomography in stress fractures of the lumbar spine. Clin Radiol. 2010;65(11):902–7.

    Article  PubMed  CAS  Google Scholar 

  62. Lovell G, Galloway H, Hopkins W, Harvey A. Osteitis pubis and assessment of bone marrow edema at the pubic symphysis with MRI in an elite junior male soccer squad. Clin J Sports Med. 2006;16(2):117–22.

    Article  Google Scholar 

  63. Ranson C, Burnett A, King M, O’Sullivan P, Cornish R, Batt M, editors. Acute lumbar stress injury, trunk kinematics, lumbar MRI and paraspinal morphology in cricket fast bowlers in cricket. In: International Conference on Biomechanics in Sport; 2008; Seoul, Korea.

  64. Kountouris A, Sims K, Beakley D, Saw A, Orchard J, Rotstein A et al. Lumbar bone stress injury in junior elite fast bowlers: role for magnetic resonance imaging and associated workload factors In press.

  65. Blanda J, Bethem D, Moats W, Lew M. Defects of pars interarticularis in athletes: a protocol for nonoperative treatment. J Spinal Disord. 1993;6(5):406–11.

    Article  PubMed  CAS  Google Scholar 

  66. Micheli L, Hall J, Miller M. Use of modified Boston brace for back injuries in athletes. Am J Sports Med. 1980;8(5):351–6.

    Article  PubMed  CAS  Google Scholar 

  67. Sairyo K, Katoh S, Takata Y, Terai T, Yasui N, Goel V, et al. MRI signal changes of the pedicle as an indicator for early diagnosis of spondylolysis in children and adolescents: a clinical and biomechanical study. Spine. 2006;31(2):206–11. https://doi.org/10.1097/01.brs.0000195161.60549.67.

    Article  PubMed  Google Scholar 

  68. Trainor TJ, Wiesel SW. Epidemiology of back pain in the athlete. Clin Sports Med. 2002;21(1):93–103.

    Article  PubMed  Google Scholar 

  69. Orchard J, James T, Portus M. Injuries to elite male cricketers in Australia over a 10-year period. J Sci Med Sport. 2006;9:459–67.

    Article  PubMed  Google Scholar 

  70. Debnath U, Freeman B, Grevitt M, Sithole J, Webb J. Clinical outcome of symptomatic unilateral stress injuries of the lumbar pars interarticularis. Spine. 2007;32(9):995–1000.

    Article  PubMed  Google Scholar 

  71. Alvarez-Diaz P, Alentorn-Geli E, Steinbacher G, Rius M, Pellise F, Cugat R. Conservative treatment of lumbar spondylolysis in young soccer players. Knee Surg Sports Traumatol Arthrosc. 2011;19(12):2111–4. https://doi.org/10.1007/s00167-011-1447-7.

    Article  PubMed  Google Scholar 

  72. Congeni J, McCulloch J, Swanson K. Lumbar spondylolysis: a study of natural progression in athletes. Am J Sports Med. 1997;25(2):248–53.

    Article  PubMed  CAS  Google Scholar 

  73. El Rassi G, Takemitsu M, Woratanarat P, Shah SA. Lumbar spondylolysis in pediatric and adolescent soccer players. Am J Sports Med. 2005;33(11):1688–93.

    Article  PubMed  Google Scholar 

  74. Pettine KA, Salib RM, Walker SG. External electrical stimulation and bracing for treatment of spondylolysis. A case report. Spine. 1993;18(4):436–9.

    Article  PubMed  CAS  Google Scholar 

  75. Vrable A, Sherman AL. Elite male adolescent gymnast who achieved union of a persistent bilateral pars defect. Am J Phys Med Rehab. 2009;88(2):156–60. https://doi.org/10.1097/PHM.0b013e31819515c0.

    Article  Google Scholar 

  76. Chambers SA, Clarke A, Wolman R. Treatment of lumbar pars interarticularis stress injuries in athletes with intravenous bisphosphonates: five case studies. Clin J Sport Med. 2011;21(2):141–3.

    Article  PubMed  Google Scholar 

  77. Raghavan P, Christofides E. Role of teriparatide in accelerating metatarsal stress fracture healing: a case series and review of literature. Clin Med Insights. 2012;5:39–45. https://doi.org/10.4137/CMED.S9663.

    Article  CAS  Google Scholar 

  78. Khan KM, Scott A. Mechanotherapy: how physical therapists’ prescription of exercise promotes tissue repair. Br J Sports Med. 2009;43(4):247–52.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  79. Blanch P, Gabbett TJ. Has the athlete trained enough to return to play safely? The acute:chronic workload ratio permits clinicians to quantify a player’s risk of subsequent injury. Br J Sports Med. 2016;50(8):471–5. https://doi.org/10.1136/bjsports-2015-095445.

    Article  PubMed  Google Scholar 

  80. Sairyo K, Sakai T, Mase Y, Kon T, Shibuya I, Kanamori Y, et al. Painful lumbar spondylolysis among pediatric sports players: a pilot MRI study. Arch Orthopaedic Trauma Surg. 2011;131(11):1485–9.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alex Kountouris.

Ethics declarations

Conflict of interest

Alex Kountouris, Richard Saw, and Anna Saw each declare that they have no conflict of interest.

Human and Animal Rights and Informed Consent

All reported studies/experiments with human or animal subjects performed by the authors have been previously published and complied with all applicable ethical standards (including the Helsinki declaration and its amendments, institutional/national research committee standards, and international/national/institutional guidelines).

Additional information

This article is part of the Topical collection on Sports Imaging.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kountouris, A., Saw, R. & Saw, A. Management of Lumbar Spondylolysis in Athletes: Role of Imaging. Curr Radiol Rep 6, 39 (2018). https://doi.org/10.1007/s40134-018-0299-z

Download citation

  • Published:

  • DOI: https://doi.org/10.1007/s40134-018-0299-z

Keywords

Navigation