Abstract
Power utilities are encouraged to convert existing conventional power plant into hybrid power plant by installing available renewable power units and energy storage facilities in order to meet the rapid increase in power demand. Energy storage facilities (ESF) in such hybrid power plant ensure a consistent level of renewable penetration throughout the operation period. However, a proper scheduling model for such hybrid power plant is essential in order to achieve a significant savings in fuel cost. The unit commitment and economic dispatch scheduling for a hybrid system consisting of thermal, renewable energy source and ESF-based units are modeled and illustrated in this paper. The data of Neyveli Thermal Power Station II are considered here to demonstrate the importance and applicability of the proposed scheduling approaches. Dynamic programming method is used to find feasible states of the generation units, while sequential quadratic programming algorithm is used for economic dispatch of committed units. The proposed approach is novel, timely useful as reported by the analysis of results.


Similar content being viewed by others
Explore related subjects
Discover the latest articles and news from researchers in related subjects, suggested using machine learning.Abbreviations
- ESF :
-
Energy storage facilities
- FF :
-
Fossil fuel
- HPP :
-
Hybrid power plant
- RES :
-
Renewable energy source
- a i , b i and c i :
-
Fuel cost coefficients
- \(E_{s} (t)\) :
-
Stored energy at tth hour
- \(E_{dl} (t)\) :
-
Delivered energy at tth hour
- \(F_{fc} \left( {P_{i} \left( t \right)} \right)\) :
-
Running fuel cost function
- \(F_{su} \left( {u_{i} \left( t \right)} \right)\) :
-
Start-up cost function
- \(N_{t}\) :
-
Total number of thermal units
- \(P_{dl}\) :
-
Delivered power
- \(P_{D} (t)\) :
-
Total power demand at tth hour
- \(P_{i} (t)\) :
-
Power output of the ith thermal unit at tth hour
- \(P_{re}^{d} (t)\) :
-
Dispatched renewable power
- \(P_{st}\) :
-
Stored power
- \(Sc_{i} (t)\) :
-
Start cost of the ith thermal unit at tth hour
- \(SR_{i} (t)\) :
-
Spinning reserve at tth hour
- \(T_{upi} (t)\) :
-
Up time of ith thermal unit
- \(T_{downi} (t)\) :
-
Down time of ith thermal unit
- \(u_{i} (t)\) :
-
State of the ith thermal unit at tth hour
- \(x(t)\) :
-
Renewable power penetration at tth hour
References
K. Kaygusuz, Renew. Sustain. Energy Rev. 16(2), 1116–1126 (2012). https://doi.org/10.1016/j.rser.2011.11.013
F.R. Pazheri, M.F. Othman, N.H. Malik, Renew. Sustain. Energy Rev. (2014). https://doi.org/10.1016/j.rser.2013.12.020
F.R. Pazheri, M.F. Othman, N.H. Malik, A.A. Al-Arainy, Res. J. Appl. Sci. Eng. Technol. 7, 19 (2014)
J. Ayre, The true cost of electricity calculated. (2012). http://cleantechnica.com/2012/09/30/the-true-cost-of-electricity-calculated. Accessed 16 Feb 2015
EIA, International Energy Outlook.(2013), http://www.eia.gov/oiaf/aeo/tablebrowser/. Accessed 16 Feb 2015
F.R. Pazheri, M.F. Othman, N.H. Malik, E.A. Al-Ammar, Int. Rev. Electr. Eng. 7, 5 (2012)
H. Lund, G. Salgi, Energy Convers. Manag. (2009). https://doi.org/10.1016/j.enconman.2009.01.032
J.P. Deane, B.P.Ó. Gallachóir, E.J. McKeogh, Renew. Sustain. Energy Rev. (2010). https://doi.org/10.1016/j.rser.2009.11.015
P.J. Hall, E.J. Bain., Energy Policy (2008). https://doi.org/10.1016/j.enpol.2008.09.037
K. Bullock, in Batteries for Sustainability, ed By R. J. Brodd, (Springer, New York, 2013), pp. 117–134
Navigant, Global energy storage capacity to multiply 100-fold by 2021.(2011),http://www.navigantresearch.com/newsroom/global-energy-storage-capacity-to-multiply-100-fold-by-2021
F.R. Pazheri, M.F. Othman, N.H. Malik, O.K. Safoora, Int. J. Appl. Eng. Res. 9, 9431–9446 (2014)
F.R. Pazheri, Z. Kaneesamkandi, M.F. Othman, N.H. Malik, Environ. Eng. Manag. J. 16, 235–243 (2017)
F. Pazheri, M. Othman, N. Malik, A. Al-Arainy, Turk. J. Electr. Eng. Comput. Sci. 24, 5150–5161 (2016)
F.R. Pazheri, M.F. Othman, N.H. Malik, A.A. Al-Arainy, in Environment, Energy and Applied Technology, ed By W.-P. Sung, J. C. M. Kao (Taylor & Francis, 2015), p. 1012
S.A. Kazarlis, A. Bakirtzis, V. Petridis, I.E.E.E. Trans, Power Syst. 11, 1 (1996)
F.R. Pazheri, M.F. Othman, N.H. Malik, Y. Khan, J. Renew. Sustain. Energy (2015). https://doi.org/10.1063/1.4906930
M. Mandala, C. Gupta, Combined economic emission dispatch based transmission congestion management under deregulated electricity market, in Computing, Int. Conf. Electronics and Electrical Technologies (2012), pp. 122–127
F.R. Pazheri, N.H. Malik, M.F. Othman, M. Babar, Int. J. Eng. Invent. 1, 49–54 (2012)
N.P. Padhy, IEEE Transact. Power Syst. (2004). https://doi.org/10.1109/tpwrs.2003.821611
F.R. Pazheri, Power system scheduling in presence of renewable energy and energy storage, Ph.D. Thesis, Universiti Teknologi Malaysia, Malaysia (2015)
C.-P. Cheng, C.-W. Liu, C.-C. Liu, I.E.E.E. Trans, Power Syst. 15, 2 (2000)
C.C.A. Rajan, M. Mohan, I.E.E.E. Trans, Power Syst. 19, 1 (2004)
C.A. Rajan, M. Mohan, K. Manivannan, in IEE Proc. –Gen., Transm. and Distr., vol. 150, p. 4 (2003)
T. Logenthiran, D. Srinivasan, Particle swarm optimization for unit commitment problem, in 2010 IEEE 11th International Conference on Probabilistic Methods Applied to Power Systems (PMAPS), IEEE, 2010, pp. 642–647
T. Imthias Ahmed, F. Pazheri, E. Jasmin, Reinforcement learning solution for economic scheduling with stochastic cost function, in Recent Advances in Intelligent Computational Systems (RAICS), 2011 IEEE, IEEE, 2011, pp. 437–440
D.N. Simopoulos, S.D. Kavatza, C.D. Vournas, I.E.E.E. Trans, Power Syst. 21, 1 (2006)
D.C. Walters, G.B. Sheble, IEEE Transact. Power Syst. (1993). https://doi.org/10.1109/59.260861
B. Mohammadi-Ivatloo, A. Rabiee, A. Soroudi, M. Ehsan, Int. J. Electr. Power Energy Syst. (2012). https://doi.org/10.1016/j.ijepes.2012.04.060
A. Srinivasa Reddy, K. Vaisakh, Int. J. Electr. Power Energy Syst. (2013). https://doi.org/10.1016/j.ijepes.2012.10.012
F.R. Pazheri, Energy Convers. (2015). https://doi.org/10.1016/j.enconman.2015.07.023
E.A. Jasmin, T.P. Imthias Ahamed, V.P. Jagathy Raj, J. Electr. Power Energy Syst (2015). https://doi.org/10.1016/j.ijepes.2010.12.008
A.M. Elaiw, X. Xia, A.M. Shehata (2012). https://doi.org/10.1109/powerafrica.2012.6498646
K. Vaisakh, P. Praveena, S. Rama Mohana Rao, K. Meah, J. Electr. Power Energy Syst (2015). https://doi.org/10.1016/j.ijepes.2012.01.005
E.A. Jasmine, Reinforcement learning approaches to power system scheduling, Ph.D. Thesis, Cochin University of Science and Technology, India (2008)
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Pazheri, F.R., Othman, M.F. & Ottukuloth, S. Power Station Scheduling with Energy Storage. J. Inst. Eng. India Ser. B 100, 77–83 (2019). https://doi.org/10.1007/s40031-018-0364-2
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s40031-018-0364-2