Skip to main content

Advertisement

Log in

Application of d-α-tocopheryl polyethylene glycol 1000 succinate (TPGS) in transdermal and topical drug delivery systems (TDDS)

  • Review
  • Published:
Journal of Pharmaceutical Investigation Aims and scope Submit manuscript

Abstract

d-α-tocopheryl polyethylene glycol 1000 succinate (TPGS) is a water-soluble nonionic surfactant, which is prepared from the esterification of Vitamin E succinate with polyethylene glycol 1000. Due to unique amphiphilic structure, TPGS offers many essential properties such as solubilizer, penetration enhancer, stabilizer, emulsifier, antioxidant agent and protection of drug in micelles, which can be used for permeation of drug through skin or deposition of drug in skin. Especially, the applications of TPGS for various systems such as supersaturated system, solid lipid nanoparticles, gels, microemulsions, nanoemulsions and solid dispersions will be discussed in this review.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Aggarwal N, Goindi S, Mehta SD (2012) Preparation and evaluation of dermal delivery system of griseofulvin containing vitamin E-TPGS as penetration enhancer. AAPS Pharm Sci Tech 13:67–74

    Article  CAS  Google Scholar 

  • Alonso MJ (2004) Nanomedicines for overcoming biological barriers (2004) Nanomedicines for overcoming biological barriers. Biomed Pharmacother 58:168–172

    Article  PubMed  Google Scholar 

  • Axelsson B (1989) Liposomes as carriers for anti-inflammatory agents. Adv Drug Deliv Rev 3:391

    Article  CAS  Google Scholar 

  • Baek JS, Pham CV, Myung CS, Cho CW (2015) Tadalafil-loaded nanostructured lipid carriers using permeation enhancers. Int J Pharm 495:701–709

    Article  CAS  PubMed  Google Scholar 

  • Bolzinger MA, Briancon S, Chevalier Y (2011) Nanoparticles through the skin: managing conflicting results of inorganic and organic particles in cosmetics and pharmaceutics. Wiley Interdiscip Rev Nanomed Nanobiotechnol 3:463–478

    CAS  PubMed  Google Scholar 

  • Borgheti-Cardoso LV, de Carvalho Vicentini FTM, Gratieri T, Lopes Badra Bentley MV (2016) Liquid crystalline systems containing Vitamin E TPGS for the controlled transdermal nicotine delivery. Braz. J Pharm Sci 52:191–200

    Google Scholar 

  • Brownlow B, Nagaraj VJ, Nayel A, Joshi M, Elbayoumi T (2015) Development and in vitro evaluation of vitamin E-enriched nanoemulsion vehicles loaded with genistein for chemoprevention against UVB-induced skin damage. J Pharm Sci 104:3510–3523

    Article  CAS  PubMed  Google Scholar 

  • Carvalho VF, de Lemos DP, Vieira CS, Migotto A, Lopes LB (2016) Potential of non-aqueous microemulsions to improve the delivery of lipophilic drugs to the skin. AAPS Pharm Sci Tech. doi:10.1208/s12249-016-0643-7

  • Cevc G, Blume G (1992) Lipid vesicles penetrate into intact skin owing to the transdermal osmotic gradients and hydration force. Biochim Biophys Acta 1104:226–232

    Article  CAS  PubMed  Google Scholar 

  • Chen CH, Sheu MT, Wu AB, Lin KP, Ho HO (2005) Simultaneous effects of tocopheryl polyethylene glycol succinate (TPGS) on local hair growth promotion and systemic absorption of topically applied minoxidil in a mouse model. Int J Pharm 306:91–98

    Article  CAS  PubMed  Google Scholar 

  • Constantinides PP, Tustian A, Kessler DR (2004) Tocol emulsions for drug solubilization and parenteral delivery. Adv Drug Deliv Rev 56:1243–1255

    Article  CAS  PubMed  Google Scholar 

  • Crowley MM, Zhang F, Koleng JJ, McGinity JW (2002) Stability of polyethylene oxide in matrix tablets prepared by hot-melt extrusion. Biomaterials 23:4241–4248

    Article  CAS  PubMed  Google Scholar 

  • Date AA, Desai N, Dixit R, Nagarsenker M (2010) Selfnanoemulsifying drug delivery systems: Formulation insights, applications and advances. Nanomedicine (Lond) 5:1595–1616

    Article  CAS  Google Scholar 

  • Davis AF, Hadgraft J (1991) Effect of supersaturation on membrane transport: 1. Hydrocortisone acetate. Int J Pharm 76:1–8

    Article  CAS  Google Scholar 

  • de Leeuw J, de Vijlder HC, Bjerring P, Neumann HA (2009) Liposomes in dermatology today. J Eur Acad Dermatol Venereol 23:505–516

    Article  PubMed  Google Scholar 

  • Elsayed MM, Abdallah OY, Naggar VF, Khalafallah NM (2007) Lipid vesicles for skin delivery of drugs: reviewing three decades of research. Int J Pharm 332:1–16

    Article  CAS  PubMed  Google Scholar 

  • Falconer JR, Wen J, Zargar-Shoshtari S, Chen JJ, Farid M, El Maghraby GM, Alany RG (2014) Evaluation of progesterone permeability from supercritical fluid processed dispersion systems. Pharm Dev Technol 19:238–246

    Article  CAS  PubMed  Google Scholar 

  • Fischer SM, Flaten GE, Hagesæther E, Fricker G, Brandl M (2011) In-vitro permeability of poorly water soluble drugs in the phospholipid vesicle-based permeation assay: the influence of nonionic surfactants. J Pharm Pharmacol 63:1022–1030

    Article  CAS  PubMed  Google Scholar 

  • Ghosh I, Michniak-Kohn B (2012a) A comparative study of Vitamin E TPGS/HPMC supersaturated system and other solubilizer/polymer combinations to enhance the permeability of a poorly soluble drug through the skin. Drug Dev Ind Pharm 38:1408–1416

  • Ghosh I, Michniak-Kohn B (2012b) Design and characterization of submicron formulation for a poorly soluble drug: the effect of Vitamin E TPGS and other solubilizers on skin permeability enhancement. Int J Pharm 434:90–98

  • Ghosh I, Michniak-Kohn B (2013) Influence of critical parameters of nanosuspension formulation on the permeability of a poorly soluble drug through the skin—a case study. AAPS Pharm Sci Tech 14:1108–1117

    Article  CAS  Google Scholar 

  • Guo Y, Luo J, Tan S, Otieno BO, Zhang Z (2013) The applications of Vitamin E TPGS in drug delivery. Eur J Pharm Sci 49:175–186

    Article  CAS  PubMed  Google Scholar 

  • Han M, He CX, Fang QL, Yang XC, Diao YY, Xu DH, He QJ, Hu YZ, Liang WQ, Yang B, Gao JQ (2009) A novel camptothecin derivative incorporated in nano-carrier induced distinguished improvement in solubility, stability and anti-tumor activity both in vitro and in vivo. Pharm Res 26:926–935

    Article  CAS  PubMed  Google Scholar 

  • Heather AEB, Adam CW (2012) Topical and transdermal drug delivery: principles and practice. Wiley, Hoboken

    Google Scholar 

  • Jana P, Hommoss A, Müller RH (2009) Lipid nanoparticles (SLN, NLC) in cosmetic and pharmaceutical dermal products. Int J Pharm 366:170–184

    Article  Google Scholar 

  • Jenning V, Schäfer-Korting M, Gohla S (2000) Vitamin A-loaded solid lipid nanoparticles for topical use: drug release properties. J Control Release 66:115–126

    Article  CAS  PubMed  Google Scholar 

  • Kaur L, jain SK, Singh K (2015) Vitamin E TPGS based nanogel for the skin targeting of high molecular weight anti-fungal drug: development and in vitro and in vivo assessment. RSC Adv 5:53671–53686

    Article  CAS  Google Scholar 

  • Khandavilli S, Panchagnula R (2007) Nanoemulsions as versatile formulations for paclitaxel delivery: peroral and dermal delivery studies in rats. J Invest Dermatol 127:154–162

    Article  CAS  PubMed  Google Scholar 

  • Kobierski S, Ofori-Kwakye K, Müller RH, Keck CM (2009) Resveratrol nanosuspensions for dermal application—production, characterization and physical stability. Pharmazie 64:741–747

    CAS  PubMed  Google Scholar 

  • Kogan A, Garti N (2006) Microemulsions as transdermal drug delivery vehicles. Adv Colloid Interface Sci 123–126:369–385

    Article  PubMed  Google Scholar 

  • Kydonieus AF, Berner B (1987) Transdermal Delivery of Drugs. CRC Press, Boca Raton, pp 69–77

    Google Scholar 

  • Li S, Pollock-Dove C, Dong LC, Chen J, Creasey AA, Dai WG (2012) Enhanced bioavailability of a poorly water-soluble weakly basic compound using a combination approach of solubilization agents and precipitation inhibitors: a case study. Mol Pharm 9:1100–1108

    Article  CAS  PubMed  Google Scholar 

  • Liou YB, Ho HO, Chen SY, Sheu MT (2009) Correlation of the penetration enhancement with the influence of an alcohol/tocopheryl polyethylene glycol succinate (TPGS) cosolvent system on the molecular structure of the stratum corneum of nude mouse skin as examined by microscopic FTIR/DSC. Spectrochim Acta Mol Biomol Spectrosc 74:695–703

    Article  Google Scholar 

  • Lippacher A, Müller RH, Mäder K (2001) Preparation of semisolid drug carriers for topical application based on solid lipid nanoparticles. Int J Pharm 214:9–12

    Article  CAS  PubMed  Google Scholar 

  • Lopes LB (2014) Overcoming the cutaneous barrier with microemulsions. Pharmaceutics 6:52–77

    Article  PubMed  PubMed Central  Google Scholar 

  • Marwah H, Garg T, Goyal AK, Rath G (2016) Permeation enhancer strategies in transdermal drug delivery. Drug Deliv 23:564–578

    Article  CAS  PubMed  Google Scholar 

  • Mishra PR, Shaal LA, Müller RH, Keck CM (2009) Production and characterization of Hesperetin nanosuspensions dermal delivery. Int J Pharm 371:182–189

    Article  CAS  PubMed  Google Scholar 

  • Mohammed FA (2001) Topical permeation characteristics of diclofenac sodium from NaCMC gels in comparison with conventional gel formulations. Drug Dev Ind Pharm 27:1083–1097

    Article  CAS  PubMed  Google Scholar 

  • Müller RH, Radtke M, Wissing SA (2002) Solid lipid nanoparticles (SLN) and nanostructured lipid carriers (NLC) in cosmetic and dermatological preparations. Adv Drug Deliv Rev 54:S131–S155

    Article  PubMed  Google Scholar 

  • Nehilla BJ, Bergkvist M, Popat KC, Desai TA (2008) Purified and surfactant-free coenzyme Q10-loaded biodegradable nanoparticles. Int J Pharm 348:107–114

    Article  CAS  PubMed  Google Scholar 

  • Neophytou CM, Constantinou C, Papageorgis P, Constantinou AI (2014) D-alpha-tocopheryl polyethylene glycol succinate (TPGS) induces cell cycle arrest and apoptosis selectively in Survivin-overexpressing breast cancer cells. Biochem Pharmacol 89:31–42

    Article  CAS  PubMed  Google Scholar 

  • Paudel KS, Milewski M, Swadley CL, Brogden NK, Ghosh P, Stinchcomb AL (2010) Challenges and opportunities in dermal/transdermal delivery. Ther Deliv 1:109–131

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • PDR (2005) Physician’s desk reference, Medical Economics Company, Montvale, NJ, pp 1396–1401

    Google Scholar 

  • Pham J, Brownlow B, Elbayoumi T (2013) Mitochondria-specific pro-apoptotic activity of genistein lipidic nanocarriers. Mol Pharm 10:3789–3800

    Article  CAS  PubMed  Google Scholar 

  • Pham J, Nayel A, Hoang C, Elbayoumi T (2014) Enhanced effectiveness of tocotrienol-based nano-emulsified system for topical delivery against skin carcinomas. Drug Deliv 23:1514–1524

    PubMed  Google Scholar 

  • Rajebahadur M, Zia H, Nues A, Lee C (2006) Mechanistic study of solubility enhancement of nifedipine using vitamin E TPGS or solutol HS-15. Drug Deliv 13:201–206

    Article  CAS  PubMed  Google Scholar 

  • Repka MA, McGinity JW (2000) Influence of vitamin E TPGS on the properties of hydrophilic films produced by hot-melt extrusion. Int J Pharm 202:63–70

    Article  CAS  PubMed  Google Scholar 

  • Romero GB, Arntjen A, Keck CM, Müller RH (2016) Amorphous cyclosporin A nanoparticles for enhanced dermal bioavailability. Int J Pharm 498:217–224

    Article  CAS  PubMed  Google Scholar 

  • Santos P, Watkinson AC, Hadgraft J, Lane ME (2008) Application of microemulsions in dermal and transdermal drug delivery. Skin Pharmacol Physiol 21:246–259

    Article  CAS  PubMed  Google Scholar 

  • Sheu MT, Chen SY, Chen LC, Ho HO (2003) Influence of micelle solubilization by tocopheryl polyethylene glycol succinate (TPGS) on solubility enhancement and percutaneous penetration of estradiol. J Control Rel 88:355–368

    Article  CAS  Google Scholar 

  • Sheu MT, Wu AB, Lin KP, Shen CH, Ho HO (2006) Effect of tocopheryl polyethylene glycol succinate on the percutaneous penetration of minoxidil from water/ethanol/polyethylene glycol 400 solutions. Drug Dev Ind Pharm 32:595–607

    Article  CAS  PubMed  Google Scholar 

  • Singh MD, Mital N, Kaur G (2016) Topical drug delivery systems: a patent review. Expert Opin Ther Pat 26:213–228

    Article  Google Scholar 

  • Somagoni J, Boakye CH, Godugu C, Patel AR, Mendonca Faria HA, Zucolotto V, Singh M (2014) Nanomiemgel–a novel drug delivery system for topical application—in vitro and in vivo evaluation. PLoS One 9:e115952

    Article  PubMed  PubMed Central  Google Scholar 

  • Souto EB, Wissing SA, Barbosa CM, Müller RH (2004) Development of a controlled release formulation based on SLN and NLC for topical clotrimazole delivery. Int J Pharm 278:71–77

    Article  CAS  PubMed  Google Scholar 

  • Suppasansatorn P, Nimmannit U, Conway BR, Du L, Wang Y (2007) Microemulsions as topical delivery vehicles for the anti-melanoma prodrug, temozolomide hexyl ester (TMZA-HE). J Pharm Pharmacol 59:787–794

    Article  CAS  PubMed  Google Scholar 

  • Sutthanut K, Lu X, Jay M, Sripanidkulchai B (2009) Solid lipid nanoparticles for topical administration of Kaempferia parviflora extracts. J Biomed Nanotechnol 5:224–232

    Article  CAS  PubMed  Google Scholar 

  • Varma MVS., Panchagnula R (2005) Enhanced oral paclitaxel absorption with vitamin E-TPGS: effect on solubility and permeability in vitro, in situ and in vivo. Eur J Pharm Sci 25:445–453

    Article  CAS  PubMed  Google Scholar 

  • Wissing SA, Müller RH (2002) Solid lipid nanoparticles as carrier for sunscreens: in vitro release and in vivo skin penetration. J Control Release 81:225–233

    Article  CAS  PubMed  Google Scholar 

  • Wissing SA, Müller RH (2003) Cosmetic applications for solid lipid nanoparticles (SLN). Int J Pharm 254:65–68

    Article  CAS  PubMed  Google Scholar 

  • Wu SH, Hopkins WK (1999) Characteristics of d-a-tocopheryl PEG1000 succinate for applications as an absorption enhancer in drug delivery systems. Pham Tech 23:52–68

    CAS  Google Scholar 

  • Yan A, Von Dem Bussche A, Kane AB, Hurt RH (2007) Tocopheryl polyethylene glycol succinate as a safe, antioxidant surfactant for processing carbon nanotubes and fullerenes. Carbon N Y 45:2463–2470

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhu X, Zeng X, Zhang X, Cao W, Wang Y, Chen H, Wang T, Tsai HI, Zhang R, Chang D, He S, Mei L, Shi X (2016) The effects of quercetin-loaded PLGA-TPGS nanoparticles on ultraviolet B-induced skin damages in vivo. Nanomedicine 12:623–632

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This study was supported by Chungnam National University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cheong-Weon Cho.

Ethics declarations

Conflict of interest

All authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pham, C.V., Cho, CW. Application of d-α-tocopheryl polyethylene glycol 1000 succinate (TPGS) in transdermal and topical drug delivery systems (TDDS). Journal of Pharmaceutical Investigation 47, 111–121 (2017). https://doi.org/10.1007/s40005-016-0300-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40005-016-0300-x

Keywords

Navigation