Skip to main content

Advertisement

Log in

Soil organic carbon sequestration in agroforestry systems. A review

  • Review Article
  • Published:
Agronomy for Sustainable Development Aims and scope Submit manuscript

Abstract

The increase in atmospheric carbon dioxide (CO2) concentrations due to emissions from fossil fuel combustion is contributing to recent climate change which is among the major challenges facing the world. Agroforestry systems can contribute to slowing down those increases and, thus, contribute to climate change mitigation. Agroforestry refers to the production of crop, livestock, and tree biomass on the same area of land. The soil organic carbon (SOC) pool, in particular, is the only terrestrial pool storing some carbon (C) for millennia which can be deliberately enhanced by agroforestry practices. Up to 2.2 Pg C (1 Pg = 1015 g) may be sequestered above- and belowground over 50 years in agroforestry systems, but estimations on global land area occupied by agroforestry systems are particularly uncertain. Global areas under tree intercropping, multistrata systems, protective systems, silvopasture, and tree woodlots are estimated at 700, 100, 300, 450, and 50 Mha, respectively. The SOC storage in agroforestry systems is also uncertain and may amount up to 300 Mg C ha−1 to 1 m depth. Here, we review and synthesize the current knowledge about SOC sequestration processes and their management in agroforestry systems. The main points are that (1) useful C sequestration in agroforestry systems for climate change mitigation must slow or even reverse the increase in atmospheric concentration of CO2 by storing some SOC for millennia, (2) soil disturbance must be minimized and tree species with a high root biomass-to-aboveground biomass ratio and/or nitrogen-fixing trees planted when SOC sequestration is among the objectives for establishing the agroforestry system, (3) sequestration rates and the processes contributing to the stabilization of SOC in agroforestry soils need additional data and research, (4) retrospective studies are often missing for rigorous determination of SOC and accurate evaluation of effects of different agroforestry practices on SOC sequestration in soil profiles, and (5) the long-term SOC storage is finite as it depends on the availability of binding sites, i.e., the soil’s mineral composition and depth. Based on this improved knowledge, site-specific SOC sequestering agroforestry practices can then be developed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1

Similar content being viewed by others

References

  • Ajayi OC, Place F, Akinnifesi FK, Sileshi GW (2011) Agricultural success from Africa: the case of fertilizer tree systems in southern Africa (Malawi, Tanzania, Mozambique, Zambia and Zimbabwe). Int J Agric Sustain 9:129–136. doi:10.3763/ijas.2010.0554

    Google Scholar 

  • Albrecht A, Kandji ST (2003) Carbon sequestration in tropical agroforestry systems. Agric Ecosyst Environ 99:15–27. doi:10.1016/S0167-8809(03)00138-5

    CAS  Google Scholar 

  • Albrecht A, Cadisch G, Blanchart E, Sitompul SM, Vanlauwe B (2004) Below-ground inputs: relationships with soil quality, soil C storage and soil structure. In: van Noordwijk M, Cadisch G, Ong CK (eds) Below-ground interactions in tropical agroecosystems—concepts and models with multiple plant components. CABI, Wallingford, pp 193–207

    Google Scholar 

  • Amézquita MC, Ibrahim M, Llanderal T, Buurman P, Amézquita E (2005) Carbon sequestration in pastures, silvopastoral systems and forests in four regions of the Latin American tropics. J Sustain For 21:31–49. doi:10.1300/J091v21n01

    Google Scholar 

  • Anderson EK, Zerriffi H (2012) Seeing the trees for the carbon: agroforestry for development and carbon mitigation. Clim Chang 115:741–757. doi:10.1007/s10584-012-0456-y

    Google Scholar 

  • Beer J, Bonnemann A, Chavez W, Fassbender HW, Imbach AC, Martel I (1990) Modelling agroforestry systems of cacao (Theobroma cacao) with laurel (Cordia alliodora) or poro (Erythrina poeppigiana) in Costa Rica. Agrofor Syst 12:229–249. doi:10.1007/BF00137286

    Google Scholar 

  • Berthrong ST, Jobbágy EG, Jackson RB (2009) A global meta-analysis of soil exchangeable cations, pH, carbon, and nitrogen with afforestation. Ecol Appl 19:2228–2241. doi:10.1890/08-1730.1

    PubMed  Google Scholar 

  • Bolan NS, Adriano DC, Kunhikrishnan A, James T, McDowell R, Senesi N (2011) Dissolved organic matter: biogeochemistry, dynamics, and environmental significance in soils. Adv Agron 110:1–75. doi:10.1016/B978-0-12-385531-2.00001-3

    CAS  Google Scholar 

  • Burgess PJ, Incoll LD, Corry DT, Beaton A, Hart BJ (2004) Poplar (Populus spp) growth and crop yields in a silvoarable experiment at three lowland sites in England. Agrofor Syst 63:157–169. doi:10.1007/s10457-004-7169-9

    Google Scholar 

  • Cubbage F, Balmelli G, Bussoni A, Noellemeyer E, Pachas AN, Fassola H, Colcombet L, Rossner B, Frey G, Dube F, de Silva ML, Stevenson H, Hamilton J, Hubbard W (2013) Comparing silvopastoral systems and prospects in eight regions of the world. Agrofor Syst 86:303–314. doi:10.1007/s10457-012-9582-z

    Google Scholar 

  • Cusack DF, Chou WW, Yang WH, Harmon ME, Silver WL, The LIDET Team (2009) Controls on long-term root and leaf litter decomposition in neotropical forests. Glob Chang Biol 15:1339–1355. doi:10.1111/j.1365-2486.2008.01781.x

    Google Scholar 

  • da Silva EV, de Moraes Gonçalves JL, de Frietas Coelho SR, Moreira RM, de Miranda Mello SL, Bouillet JP, Jourdan C, Laclau J-P (2009) Dynamics of fine root distribution after establishment of monospecific and mixed-species plantations of Eucalyptus grandis and Acacia mangium. Plant Soil 325:305–318. doi:10.1007/s11104-009-9980-6

    Google Scholar 

  • Denef K, Six J (2006) Contributions of incorporated residue and living roots to aggregate-associated and microbial carbon in two soils with different clay mineralogy. Eur J Soil Sci 57:774–786. doi:10.1111/j.1365-2389.2005.00762.x

    Google Scholar 

  • Dixon RK (1995) Agroforestry systems: sources or sinks of greenhouse gases? Agrofor Syst 31:99–116. doi:10.1007/BF00711719

    Google Scholar 

  • Don A, Schumacher J, Freibauer A (2011) Impact of tropical land-use change on soil organic carbon stocks—a meta-analysis. Glob Chang Biol 17:1658–1670. doi:10.1111/j.1365-2486.2010.02336.x

    Google Scholar 

  • Ewing SA, Sandermann J, Baisden WT, Wang Y, Amundson R (2006) Role of large-scale soil structure in organic carbon turnover: evidence from California grassland soils. J Geophys Res 111, G03012. doi:10.1029/2006JG000174

    Google Scholar 

  • FAO (2009) Enabling agriculture to contribute to climate change mitigation. The Food and Agriculture Organization of the United Nations, Rome, FAO submission to the UNFCCC

    Google Scholar 

  • Gama-Rodrigues EF, Nair PKR, Nair VD, Gama-Rodrigues AC, Baligar VC, Machado RCR (2010) Carbon storage in soil size fractions under two cacao agroforestry systems in Bahia, Brazil. Environ Manag 45:274–283. doi:10.1007/s00267-009-9420-7

    Google Scholar 

  • Gärdenäs AI, Ågren GI, Bird JA, Clarholm M, Hallin S, Ineson P, Kätterer T, Knicker H, Nilsson SI, Näsholm T, Ogle S, Paustian K, Persson T, Stendahl J (2011) Knowledge gaps in soil carbon and nitrogen interactions—from molecular to global scale. Soil Biol Biochem 43:702–717. doi:10.1016/j.soilbio.2010.04.006

    Google Scholar 

  • Gentile R, Vanlauwe B, Six J (2011) Litter quality impacts short- but not long-term soil carbon dynamics in soil aggregate fractions. Ecol Appl 21:695–703

    PubMed  Google Scholar 

  • Guo LB, Gifford RM (2002) Soil carbon stocks and land use change: a meta analysis. Glob Chang Biol 8:345–360

    Google Scholar 

  • Guo D, Li H, Mitchell RJ, Han W, Hendricks JJ, Fahey TJ, Hendrick RL (2008) Fine root heterogeneity by branch order: exploring the discrepancy in root turnover estimates between minirhizotron and carbon isotopic methods. New Phytol 177:443–456. doi:10.1111/j.1469-8137.2007.02242.x

    PubMed  Google Scholar 

  • Haile SG, Nair PKR, Nair VD (2008) Carbon storage of different soil-size fractions in Florida silvopastoral systems. J Environ Qual 37:1789–1797. doi:10.2134/jeq2007.0509

    CAS  PubMed  Google Scholar 

  • Haile SG, Nair VD, Nair PKR (2010) Contribution of trees to carbon storage in soils of silvopastoral systems in Florida, USA. Global Chang Biol 16:427–438. doi:10.1111/j.1365-2486.2009.01981.x

    Google Scholar 

  • Horwath W (2007) Carbon cycling and formation of soil organic matter. In: Paul EA (ed) Soil microbiology, ecology, and biochemistry. Academic, Burlington, pp 303–339

    Google Scholar 

  • Inderjit, Malik AU (2002) Chemical ecology of plants: allelopathy in aquatic and terrestrial ecosystems. Birkhäuser-Verlag, Berlin

    Google Scholar 

  • IPCC (2000) Land use, land-use change, and forestry. Cambridge University Press, Cambridge, p 375, A special report of the IPCC

    Google Scholar 

  • IPCC (2007) Climate change 2007: synthesis report. In: Core Writing Team, Pachauri RK, Reisinger A (eds) Contribution of working groups I, II and III to the fourth assessment report of the intergovernmental panel on climate change. IPCC, Geneva

    Google Scholar 

  • Isaac ME, Gordon AM, Thevathasan NV, Oppong SK, Quashi-Sam J (2005) Temporal changes in soil carbon and nitrogen in west African multistrata agroforestry systems: a chronosequence of pools and fluxes. Agrofor Syst 65:23–31. doi:10.1007/s10457-004-4187-6

    Google Scholar 

  • Jandl R, Lindner M, Vesterdahl L, Bauwens B, Baritz R, Hagedorn F, Johnson DW, Minkkinen K, Byrne KA (2007) How strongly can forest management influence soil carbon sequestration? Geoderma 137:253–268. doi:10.1016/j.geoderma.2006.09.003

    CAS  Google Scholar 

  • Jandl R, Rodeghiero M, Martinez C, Cotrufo MF, Bampa F, van Wesemael B, Harrison RB, Guerrini IA, de Richter DD, Rustad L, Lorenz K, Chabbi A, Miglietta F (2014) Current status, uncertainty and future needs in soil organic carbon monitoring. Sci Total Environ 468–469:376–383. doi:10.1016/j.scitotenv.2013.08.026

    PubMed  Google Scholar 

  • Jobbágy EG, Jackson RB (2000) The vertical distribution of soil organic carbon and its relation to climate and vegetation. Ecol Appl 10:423–436

    Google Scholar 

  • John J, Patil RH, Joy M, Nair AM (2006) Methodology of allelopathy research: 1. Agroforestry systems. Allelopathy J 18:173–214

    Google Scholar 

  • Johnson DW, Curtis PS (2001) Effects of forest management on soil C and N storage: meta analysis. For Ecol Manag 140:227–238

    Google Scholar 

  • Johnson JMF, Allmaras RR, Reicosky DC (2006) Estimating source carbon from crop residues, roots and rhizodeposits using the national grain-yield database. Agron J 98:622–636. doi:10.2134/agronj2005.0179

    CAS  Google Scholar 

  • Jones DL, Nguyen C, Finlay RD (2009) Carbon flow in the rhizosphere: carbon trading at the soil-root interface. Plant Soil 321:5–33. doi:10.1007/s11104-009-9925-0

    CAS  Google Scholar 

  • Jose S, Bardhan S (2012) Agroforestry for biomass production and carbon sequestration: an overview. Agrofor Syst 86:105–111. doi:10.1007/s10457-012-9573-x

    Google Scholar 

  • Jose S, Gillespie AR, Pallardy SG (2004) Interspecific interactions in temperate agroforestry. Agrofor Syst 61:237–255. doi:10.1023/B:AGFO.0000029002.85273.9b

    Google Scholar 

  • Kell DB (2012) Large-scale sequestration of atmospheric carbon via plant roots in natural and agricultural ecosystems: why and how. Philos Trans R Soc B 367:1589–1597. doi:10.1098/rstb.2011.0244

    CAS  Google Scholar 

  • Kindler R, Siemens J, Kaiser K, Walmsley DC, Bernhofer C, Buchmann N, Cellier P, Eugster W, Gleixner G, Grûnwald T, Heim A, Ibrom A, Jones SK, Jones M, Klumpp K, Kutsch W, Larsen KS, Lehuger S, Loubet B, McKenzie R, Moor E, Osborne B, Pilegaard K, Rebmann C, Saunders M, Schmidt MWI, Schrumpf M, Seyfferth J, Skiba U, Soussana J-F, Sutton MA, Tefs C, Vowinckel B, Zeeman MJ, Kaupenjohann M (2011) Dissolved carbon leaching from soil is a crucial component of the net ecosystem carbon balance. Glob Chang Biol 17:1167–1185. doi:10.1111/j.1365-2486.2010.02282.x

    Google Scholar 

  • Kizito F, Dragila M, Sène M, Lufafa A, Diedhiou I, Dick RP, Selker JS, Dossa E, Khouma M, Badiane A, Ndiaye S (2006) Seasonal soil water variation and root patterns between two semi-arid shrubs co-existing with Pearl millet in Senegal, West Africa. J Arid Environ 67:436–455. doi:10.1016/j.jaridenv.2006.02.021

    Google Scholar 

  • Kleber M, Nico PS, Plante A, Filley T, Kramer M, Swanston C, Sollins P (2011) Old and stable soil organic matter is not necessarily chemically recalcitrant: implications for modeling concepts and temperature sensitivity. Glob Chang Biol 17:1097–1107. doi:10.1111/j.1365-2486.2010.02278.x

    Google Scholar 

  • Kögel-Knabner I, Guggenberger G, Kleber M, Kandeler E, Kalbitz K, Scheu S, Eusterhues K, Leinweber P (2008) Organo-mineral associations in temperate soils: integrating biology, mineralogy and organic matter chemistry. J Plant Nutr Soil Sci 171:61–82. doi:10.1002/jpln.200700048

    Google Scholar 

  • Kohli RK, Singh HP, Batish DR, Jose S (2008) Ecological interactions in agroforestry: an overview. In: Batish DR, Kohli RK, Jose S, Singh HP (eds) Ecological basis of agroforestry. CRC Press, Boca Raton, pp 3–14

    Google Scholar 

  • Krna MA, Rapson GL (2013) Clarifying ‘carbon sequestration’. Carbon Manag 4:309–322

    CAS  Google Scholar 

  • Laganière J, Angers D, Paré D (2010) Carbon accumulation in agricultural soils after afforestation: a meta-analysis. Glob Chang Biol 16:439–453. doi:10.1111/j.1365-2486.2009.01930.x

    Google Scholar 

  • Lal R (2005) Soil carbon sequestration in natural and managed tropical forest ecosystems. J Sustain For 21:1–30. doi:10.1300/J091v21n01_01

    Google Scholar 

  • Lal R, Follett RF (2009) Soils and climate change. In: Lal R, Follett RF (eds) Soil carbon sequestration and the greenhouse effect. SSSA Special Publication 57, 2nd edn. Madison, WI, xxi-xxviii

  • Li D, Niu S, Luo Y (2012) Global patterns of the dynamics of soil carbon and nitrogen stocks following afforestation: a meta-analysis. New Phytol 195:172–181. doi:10.1111/j.1469·8137,2012.04150.x

    CAS  PubMed  Google Scholar 

  • Liste HH, White JC (2008) Plant hydraulic lift of soil water—implications for crop production and land restoration. Plant Soil 313:1–17. doi:10.1007/s11104-008-9696-z

    CAS  Google Scholar 

  • Lorenz K, Lal R (2005) The depth distribution of soil organic carbon in relation to land use and management and the potential of carbon sequestration in subsoil horizons. Adv Agron 88:35–66. doi:10.1016/S0065-2113(05)88002-2

    CAS  Google Scholar 

  • Lorenz K, Lal R (2010) Carbon sequestration in forest ecosystems. Springer, Dordrecht

    Google Scholar 

  • Mackey B, Prentice IC, Steffen W, House JI, Lindenmayer D, Keith H, Berry S (2013) Untangling the confusion around land carbon science and climate change mitigation policy. Nat Clim Chang 3:552–557. doi:10.1038/NCLIMATE1804

    CAS  Google Scholar 

  • Matocha J, Schroth G, Hills T, Hole D (2012) Integrating climate change adaptation and mitigation through agroforestry and ecosystem conservation. In: Nair PKR, Garrity D (eds) Agroforestry—the future of global land use. Springer, Dordrecht, pp 105–126

    Google Scholar 

  • Mbow C, Smith P, Skole D, Duguma L, Bustamante M (2014) Achieving mitigation and adaptation to climate change through sustainable agroforestry practices in Africa. Curr Opin Environ Sustain 6:8–14. doi:10.1016/j.cosust.2013.09.002

    Google Scholar 

  • Meinen C, Hertel D, Leuschner C (2009) Root growth and recovery in temperate broad-leaved forest stands differing in tree species diversity. Ecosystems 12:1103–1116. doi:10.1007/s10021-009-9271-3

    Google Scholar 

  • Mitchell RJ, Campbell CD, Chapman SJ, Cameron CM (2010) The ecological engineering impact of a single tree species on the soil microbial community. J Ecol 98:50–61. doi:10.1111/j.1365-2745.2009.01601.x

    CAS  Google Scholar 

  • Mosquera-Losada MR, Ferreiro-Domínguez N, Rigueiro-Rodríguez A (2010) Fertilization in pastoral and Pinus radiata D. Don silvopastoral systems developed in forest and agronomic soils of Northwest Spain. Agric Ecosyst Environ 139:618–628

    CAS  Google Scholar 

  • Nair PKR (2012a) Carbon sequestration studies in agroforestry systems: a reality-check. Agrofor Syst 86:243–253. doi:10.1007/s10457-011-9434-z

    Google Scholar 

  • Nair PKR (2012b) Climate change mitigation: a low-hanging fruit of agroforestry. In: Nair PKR, Garrity D (eds) Agroforestry—the future of global land use. Springer, Dordrecht, pp 31–67

    Google Scholar 

  • Nair PKR, Garrity D (2012) Agroforestry research and development: the way forward. In: Nair PKR, Garrity D (eds) Agroforestry—the future of global land use. Springer, Dordrecht, pp 515–531

    Google Scholar 

  • Nair PKR, Nair VD (2014) ‘Solid–fluid–gas’: the state of knowledge on carbon-sequestration potential of agroforestry systems in Africa. Curr Opin Environ Sustain 6:22–27. doi:10.1016/j.cosust.2013.07.014

    Google Scholar 

  • Nair PKR, Gordon AM, Mosquera-Losada MR (2008) Agroforestry. In: Jorgensen SE, Fath BD (eds) Ecological engineering, encyclopedia of ecology, vol. 1. Elsevier, Oxford, pp 101–110

    Google Scholar 

  • Nair PKR, Kumar BM, Nair VD (2009a) Agroforestry as a strategy for carbon sequestration. J Plant Nutr Soil Sci 172:10–23. doi:10.1002/jpln.200800030

    CAS  Google Scholar 

  • Nair PKR, Nair V, Gama-Rodrigues E, Garcia R, Haile S, Howlett D, Kumar BM, Mosquera-Losada MR, Saha S, Takimoto A, Tonucci R (2009b) Soil carbon in agroforestry systems: an unexplored treasure?. Available from Nature Proceedings <http://hdl.handle.net/10101/npre.2009.4061.1> (2009)

  • Nair PKR, Nair VD, Kumar BM, Showalter JM (2010) Carbon sequestration in agroforestry systems. Adv Agron 108:237–307. doi:10.1016/S0065-2113(10)08005-3

    CAS  Google Scholar 

  • Nepstad DC, De Carvalhot CR, Davidson EA, Jipp PH, Lefebvre PA, Negreiros GH, Da Silva ED, Stone TA, Trumbore SE, Vieira S (1994) The role of deep roots in the hydrological and carbon cycles of Amazonian forests and pastures. Nature 372:666–669

    CAS  Google Scholar 

  • Oelbermann M, Voroney RP, Gordon AM, Kass DCL, Schlönvoigt AM, Thevathasan NV (2006) Soil carbon dynamics and residue stabilization in a Costa Rican and southern Canadian alley cropping system. Agrofor Syst 68:27–36. doi:10.1007/s10457-005-5963-7

    Google Scholar 

  • Ong CK, Kho RM, Radersma S (2004) Ecological interactions in multispecies agroecosystems: concepts and rules. In: Ong CK, Huxely P (eds) Tree-crop interactions, a physiological approach. CAB International, Wallingford, pp 1–15

    Google Scholar 

  • Paul KI, Polglase PJ, Nyakuengama JG, Khanna PK (2002) Change in soil carbon following afforestation. For Ecol Manag 168:241–257. doi:10.1016/S0378-1127(01)00740-X

    Google Scholar 

  • Peichl M, Thevathasan NV, Gordon AM, Huss J, Abohassan RA (2006) Carbon sequestration potentials in temperate tree-based intercropping systems, southern Ontario, Canada. Agrofor Syst 66:243–257. doi:10.1007/s10457-005-0361-8

    Google Scholar 

  • Perry CH, Woodall CW, Liknes GC, Schoeneberger MM (2008) Filling the gap: improving estimates of working tree resources in agricultural landscapes. Agrofor Syst 75:91–101. doi:10.1007/s10457-008-9125-6

    Google Scholar 

  • Peters GP, Marland G, Le Quéré C, Boden T, Canadell JG, Raupach MR (2012) Rapid growth in CO2 emissions after the 2008–2009 global financial crisis. Nat Clim Chang 2:2–4. doi:10.1038/nclimate1332

    CAS  Google Scholar 

  • Peters GP, Andrew RM, Boden T, Canadell JG, Ciais P, Le Quéré C, Marland G, Raupach MR, Wilson C (2013) The challenge to keep global warming below 2 °C. Nat Clim Chang 3:4–6. doi:10.1038/nclimate1783

    Google Scholar 

  • Poeplau C, Don A, Vesterdal L, Leifeld J, Van Wesemael B, Schumacher J, Gensior A (2011) Temporal dynamics of soil organic carbon after land-use change in the temperate zone—carbon response functions as a model approach. Glob Chang Biol 17:2415–2427. doi:10.1111/j.1365-2486.2011.02408.x

    Google Scholar 

  • Post WM, Kwon KC (2000) Soil carbon sequestration and land-use change: processes and potential. Glob Chang Biol 6:317–327. doi:10.1046/j.1365-2486.2000.00308.x

    Google Scholar 

  • Powlson DS, Whitmore AP, Goulding KWT (2011) Soil carbon sequestration to mitigate climate change: a critical re-examination to identify the true and the false. Eur J Soil Sci 62:42–55. doi:10.1111/j.1365-2389.2010.01342.x

    CAS  Google Scholar 

  • Preston CM, Nault JR, Trofymow JA (2009a) Chemical changes during 6 years of decomposition of 11 litters in some Canadian forest sites. Part 2. 13C abundance, solid-state 13C NMR spectroscopy and the meaning of “lignin”. Ecosystems 12:1078–1102. doi:10.1007/s10021-009-9267-z

    CAS  Google Scholar 

  • Preston CM, Nault JR, Trofymow JA, Smyth C, Working Group CIDET (2009b) Chemical changes during 6 years of decomposition of 11 litters in some Canadian forest sites. Part 1. Elemental composition, tannins, phenolics, and proximate fractions. Ecosystems 12:1053–1077. doi:10.1007/s10021-009-9266-0

    CAS  Google Scholar 

  • Rao MR, Schroth G, Williams SE, Namirembe S, Schaller M, Wilson J (2004) Managing below-ground interactions in agroecosystems. In: Ong CK, Huxely P (eds) Tree-crop interactions, a physiological approach. CAB International, Wallingford, pp 309–328

    Google Scholar 

  • Rasse DP, Rumpel C, Dignac MF (2005) Is soil carbon mostly root carbon? Mechanisms for a specific stabilization. Plant Soil 269:341–356. doi:10.1007/s11104-004-0907-y

    CAS  Google Scholar 

  • Resh SC, Binkley D, Parrotta JA (2002) Greater soil carbon sequestration under nitrogen-fixing trees compared with Eucalyptus species. Ecosystems 5:217–231. doi:10.1007/s10021-001-0067-3

    CAS  Google Scholar 

  • Rigueiro-Rodríguez A, Fernández-Núñez E, González-Hernández P, McAdam JH, Mosquera-Losada MR (2009) Agroforestry systems in Europe: productive, ecological and social perspectives. In: Rigueiro-Rodríguez A, McAdam J, Mosquera-Losada MR (eds) Agroforestry in Europe. Current status and future prospects. Springer, Dordrecht, pp 43–66

    Google Scholar 

  • Ritter E (2007) Carbon, nitrogen and phosphorus in volcanic soils following afforestation with native birch (Betula pubescens) and introduced larch (Larix sibirica) in Iceland. Plant Soil 295:239–251. doi:10.1007/s11104-007-9279-4

    CAS  Google Scholar 

  • Rizvi SJH, Tahir M, Rizvi V, Kohli RK, Ansari A (1999) Allelopathic interactions in agroforestry systems. Crit Rev Plant Sci 19:773–796. doi:10.1080/07352689991309487

    Google Scholar 

  • Rumpel C, Kögel-Knabner I (2011) Deep soil organic matter—a key but poorly understood component of terrestrial C cycle. Plant Soil 338:143–158. doi:10.1007/s11104-010-0391-5

    CAS  Google Scholar 

  • Saha SK, Nair PKR, Nair VD, Kumar BM (2009) Soil carbon stock in relation to plant diversity of homegardens in Kerala, India. Agrofor Syst 76:53–65. doi:10.1007/s10457-009-9228-8

    Google Scholar 

  • Saha SK, Nair PKR, Nair VD, Kumar BM (2010) Carbon storage in relation to soil size-fractions under tropical tree-based land-use systems. Plant Soil 328:433–446. doi:10.1007/s11104-009-0123-x

    CAS  Google Scholar 

  • Sanderman J, Farquharson R, Baldock J (2010) Soil carbon sequestration potential: a review for Australian agriculture—a report prepared for Department of Climate Change and Energy Efficiency, CSIRO Land and Water. http://www.csiro.au/resources/Soil-Carbon-Sequestration-Potential-Report.html

  • Scherer-Lorenzen M, Potvin C, Koricheva J, Schmid B, Hector A, Bornik Z, Reynolds G, Schulze E-D (2005) The design of experimental tree plantations for functional biodiversity research. In: Scherer-Lorenzen M, Körner C, Schulze E-D (eds) Forest diversity and function. Ecological studies, vol 176. Springer, Berlin, pp 347–376

    Google Scholar 

  • Scheu S, Schauermann J (1994) Decomposition of roots and twigs: effects of wood type (beech and ash), diameter, site of exposure and macrofauna exclusion. Plant Soil 241:155–176. doi:10.1007/BF00033936

    Google Scholar 

  • Schmidt MWI, Torn MS, Abiven S, Dittmar T, Guggenberger G, Janssens IA, Kleber M, Kögel-Knabner I, Lehmann J, Manning DAC, Nannipieri P, Rasse DP, Weiner S, Trumbore SE (2011) Persistence of soil organic matter as an ecosystem property. Nature 478:49–56. doi:10.1038/nature10386

    CAS  PubMed  Google Scholar 

  • Schoeneberger M, Bentrup G, de Gooijer H, Soolanayakanahally R, Sauer T, Brandle J, Zhou X, Current D (2012) Branching out: agroforestry as a climate change mitigation and adaptation tool for agriculture. J Soil Water Conserv 67:128A–136A. doi:10.2489/jswc.67.5.128A

    Google Scholar 

  • Schroth G (1999) A review of belowground interactions in agroforestry, focussing on mechanisms and management options. Agrofor Syst 43:5–34

    Google Scholar 

  • Schroth G, Zech W (1995) Above- and below-ground biomass dynamics in a sole cropping and an alley cropping system with Gliricidia sepium in the semi-deciduous rainforest zone of West Africa. Agrofor Syst 31:181–198

    Google Scholar 

  • Schroth G, D’Angelo SA, Teixeira WG, Haag D, Lieberei R (2002) Conversion of secondary forest into agroforestry and monoculture plantations in Amazonia: consequences for biomass, litter and soil carbon stocks after seven years. For Ecol Manag 163:131–150

    Google Scholar 

  • Schrumpf M, Kaiser K, Guggenberger G, Persson T, Kögel-Knabner I, Schulze ED (2013) Storage and stability of organic carbon in soils as related to depth, occlusion within aggregates, and attachment to minerals. Biogeosciences 10:1675–1691. doi:10.5194/bg-10-1675-2013

    Google Scholar 

  • Shi S, Zhang W, Zhang P, Yu Y, Ding F (2013) A synthesis of change in deep soil organic carbon stores with afforestation of agricultural soils. For Ecol Manag 296:53–63. doi:10.1016/j.foreco.2013.01.026

    Google Scholar 

  • Sileshi G, Akinnifesi FK, Ajayi OC, Chakeredza S, Kaonga M, Matakala PW (2007) Contribution of agroforestry to ecosystem services in the Miombo eco-region of eastern and southern Africa. Afr J Environ Sci Technol 4:68–80

    Google Scholar 

  • Six J, Elliott ET, Paustian K (2000) Soil macroaggregate turnover and microaggregate formation: a mechanism for C sequestration under no-tillage agriculture. Soil Biol Biochem 32:2099–2103. doi:10.1016/S0038-0717(00)00179-6

    CAS  Google Scholar 

  • Smith P, Martino D, Cai Z, Gwary D, Janzen H, Kumar P, McCarl B, Ogle S, O’Mara F, Rice C, Scholes B, Sirotenko O, Howden M, McAllister T, Pan G, Romanenkov V, Schneider U, Towprayoon S, Wattenbach M, Smith J (2008) Greenhouse gas mitigation in agriculture. Philos Trans R Soc B 363:789–813. doi:10.1098/rstb.2007.2184

    CAS  Google Scholar 

  • Sollins P, Swanston C, Kramer M (2007) Stabilization and destabilization of soil organic matter—a new focus. Biogeochemistry 85:1–7. doi:10.1007/s10533-007-9099-x

    Google Scholar 

  • Soto-Pinto L, Anzueto M, Mendoza J, Ferrer GJ, de Jong B (2010) Carbon sequestration through agroforestry in indigenous communities of Chiapas, Mexico. Agrofor Syst 78:39–51. doi:10.1007/s10457-009-9247-5

    Google Scholar 

  • Stavi I, Lal R (2013) Agroforestry and biochar to offset climate change: a review. Agron Sustain Dev 33:81–96. doi:10.1007/s13593-012-0081-1

    Google Scholar 

  • Stockmann U, Adams MA, Crawford JW, Field DJ, Henakaarchchi N, Jenkins M, Minasny B, McBratney AB, de Remy de Courcelles V, Singh K, Wheeler I, Abbott L, Angers DA, Baldock J, Bird M, Brookes PC, Chenu C, Jastrow JD, Lal R, Lehmann J, O’Donnell AG, Parton WJ, Whitehead D, Zimmermann M (2013) The knowns, known unknowns and unknowns of sequestration of soil organic carbon. Agric Ecosyst Environ 164:80–99. doi:10.1016/j.agee.2012.10.001

    CAS  Google Scholar 

  • Torn MS, Swanston CW, Castanha C, Trumbore SE (2009) Storage and turnover of natural organic matter in soil. In: Senesi N, Xing B, Huang PM (eds) Biophysico-chemical processes involving natural nonliving organic matter in environmental systems. Wiley, Hoboken, pp 219–272

    Google Scholar 

  • U.S. Department of Energy (2008) Carbon cycling and biosequestration: integrating biology and climate through systems science, report from the March 2008 Workshop, DOE/SC-108, U.S. Department of Energy Office of Science. http://genomicsgtl.energy.gov/carboncycle

  • Van Noordwijk M, Lawson G, Soumare A, Groot JJR, Hairiah K (1996) Root distribution of trees and crops: competition and/or complementarity. In: Ong CK, Huxely P (eds) Tree-crop interactions, a physiological approach. CAB International, Wallingford, pp 319–364

    Google Scholar 

  • Vermeulen SJ, Campbell BM, Ingram JSI (2012) Climate change and food systems. Annu Rev Environ Resour 37:195–222. doi:10.1146/annurev-environ-020411-130608

    Google Scholar 

  • von Lützow M, Kögel-Knabner I, Ekschmitt K, Matzner E, Guggenberger G, Marschner B, Flessa H (2006) Stabilization of organic matter in temperate soils: mechanisms and their relevance under different soil conditions—a review. Eur J Soil Sci 57:426–445. doi:10.1111/j.1365-2389.2006.00809.x

    Google Scholar 

  • World Business Council for Sustainable Development (2010) Vision 2050: the new agenda for business. http://www.wbcsd.org/pages/edocument/edocumentdetails.aspx?id=219&nosearchcontextkey=true

  • Wutzler T, Reichstein M (2007) Soils apart from equilibrium—consequences for soil carbon balance modeling. Biogeosciences 4:125–136

    CAS  Google Scholar 

  • Young A (1997) Agroforestry for soil management. C.A.B. International and ICRAF, Wallingford

    Google Scholar 

  • Zhang W, Ahanbieke P, Wang BJ, Xu WL, Li LH, Christie P, Li L (2013) Root distribution and interactions in jujube tree/wheat agroforestry system. Agrofor Syst 87:929–939. doi:10.1007/s10457-013-9609-x

    Google Scholar 

Download references

Acknowledgments

Klaus Lorenz greatly acknowledges the research fellowship granted by “Bundesministerium für Bildung und Forschung” and its platform “Forschung für Nachhaltigkeit”, and by “Ministerium für Wissenschaft, Forschung und Kultur, Land Brandenburg.”

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Klaus Lorenz.

About this article

Cite this article

Lorenz, K., Lal, R. Soil organic carbon sequestration in agroforestry systems. A review. Agron. Sustain. Dev. 34, 443–454 (2014). https://doi.org/10.1007/s13593-014-0212-y

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13593-014-0212-y

Keywords

Navigation