Skip to main content
Log in

Using mathematics to solve real world problems: the role of enablers

  • Original Article
  • Published:
Mathematics Education Research Journal Aims and scope Submit manuscript

Abstract

The purpose of this article is to report on a newly funded research project in which we will investigate how secondary students apply mathematical modelling to effectively address real world situations. Through this study, we will identify factors, mathematical, cognitive, social and environmental that “enable” year 10/11 students to successfully begin the modelling process, that is, formulate and mathematise a real world problem. The 3-year study will take a design research approach in working intensively with six schools across two educational jurisdictions. It is anticipated that this research will generate new theoretical and practical insights into the role of “enablers” within the process of mathematisation, leading to the development of principles for the design and implementation for tasks that support students’ development as modellers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • ACARA (2016). Australian Curriculum: Mathematics Aims Retrieved 27 Sept 2016 from http://www.australiancurriculum.edu.au/mathematics/aims.

  • Australian Industry Group (2015). Progressing STEM skills in Australia. Sydney: Author.

  • Blum, W. (2011). Can modelling be taught and learnt? Some answers from empirical research. In G. Kaiser, W. Blum, R. Borromeo Ferri, & G. Stillman (Eds.), Trends in teaching and learning of mathematical modelling (pp. 15–30). Dordrecht: Springer.

    Chapter  Google Scholar 

  • Brown, J. (2015). Complexities of digital technology use and the teaching and learning of function. Computers & Education, 87, 112–122.

    Article  Google Scholar 

  • Burns, R. (2000). Introduction to research methods (4th ed.). Sydney: Longman.

    Google Scholar 

  • Cai, J., & Melino, F. J. (2011). Metaphors: a powerful means for assessing students’ mathematical disposition. In D. J. Brahier & W. R. Speer (Eds.), Motivation and disposition: pathways to learning mathematics (pp. 147–156). Reston, VA: NCTM.

    Google Scholar 

  • Cobb, P., Confrey, J., diSessa, A., Lehrer, R., & Schauble, L. (2003). Design experiments in educational research. Educational Researcher, 32(1), 9–13.

    Article  Google Scholar 

  • English, L. D. (2016). Advancing mathematics education research within a STEM environment. In K. Makar, S. Dole, J. Visnovska, M. Goos, A. Bennison, & K. Fry (Eds.), Research in mathematics education in Australasia 2012–2015 (pp. 353–372). Singapore: Springer.

    Google Scholar 

  • Flavell, J., Miller, P., & Miller, S. (2002). Cognitive development (4th ed.). Upper Saddle River, NJ: Prentice Hall.

    Google Scholar 

  • Galbraith, P. (2015). “Noticing” in the practice of modelling as real world problem solving. In G. Kaiser & H.-W. Henn (Eds.), Werner Blum und seine Beiträge zum Modellieren im Mathematikunterricht: Realitätsbezüge im Mathematikunterricht (pp. 151–166). Wiesbaden: Springer.

    Chapter  Google Scholar 

  • Galbraith, P., Stillman, G., & Brown, J. (2010). Turning ideas into modeling problems. In R. Lesh, P. L. Galbraith, C. R. Haines, & A. Hurford (Eds.), Modeling students’mathematical competencies (pp. 133–144). New York: Springer.

    Chapter  Google Scholar 

  • Geiger, V., Faragher, R., & Goos, M. (2010). CAS-enabled technologies as ‘agents provocateurs’ in teaching and learning mathematical modelling in secondary school classrooms. Mathematics Education Research Journal, 22(2), 48–68.

    Article  Google Scholar 

  • Geiger, V., Goos, M., & Dole, S. (2015a). The role of digital technologies in numeracy teaching and learning. International Journal of Science and Mathematics Education, 13(5), 1115–1137. doi:10.1007/s10763-014-9530-4.

    Article  Google Scholar 

  • Geiger, V., Goos, M., & Forgasz, H. (2015b). A rich interpretation of numeracy for the 21st century: a survey of the state of the field. ZDM–Mathematics Education, 47(4), 531–548. doi:10.1007/s11858-015-0708-1.

    Google Scholar 

  • Gould, H., & Wasserman, N. H. (2014). Striking a balance: students’ tendencies to oversimplify or overcomplicate in mathematical modelling. Journal of Mathematics Education at Teachers’ College, 5(1), 27–34.

    Google Scholar 

  • Jorgensen, R., & Lowrie, T. (2012). Digital games for learning mathematics: possibilities and limitations. In J. Dindyal, L. P. Cheng, & S. F. Ng (Eds.), Mathematics education: expanding horizons (pp. 378–384). Adelaide: MERGA.

    Google Scholar 

  • Kaiser, G., & Maaβ, K. (2007). Modelling in lower secondary mathematics classroom—problems and opportunities. In W. Blum, P. Galbraith, H.-W. Henn, & M. Niss (Eds.), Modelling and applications in mathematics education (pp. 99–108). New York: Springer.

    Chapter  Google Scholar 

  • Marginson, S., Tytler, R., Freeman, B. & Roberts, K. (2013). STEM country comparisons: international comparisons of science, technology, engineering and mathematics (STEM) education. Report for the Australian Council of Learned Academies. Retrieved from www.acola.org.au on 5 Feb 2017.

  • Maaß, K. (2006). What are modelling competencies? ZDM –Mathematics Education, 38(2), 113–142.

    Article  Google Scholar 

  • New York Academy of Sciences. (2015). The global STEM paradox. New York: Author.

    Google Scholar 

  • Niss, M. (2010). Modeling a crucial aspect of students’ mathematical modeling. In R. Lesh, P. L. Galbraith, C. R. Haines, & A. Hurford (Eds.), Modeling students’ mathematical competencies (pp. 43–59). New York: Springer.

    Chapter  Google Scholar 

  • OECD. (2009). Mathematics framework. In OECD PISA 2009 assessment framework (pp. 83–123). Paris: OECD Publishing.

    Google Scholar 

  • Office of the Chief Scientist. (2012). Mathematics, engineering and science in the national interest. Canberra: Commonwealth of Australia.

    Google Scholar 

  • Paulos, J. A. (2000). Innumeracy: mathematical illiteracy and its consequences. London: Penguin.

    Google Scholar 

  • Stacey, K., & Turner, R. (2015). PISA’s reporting of mathematical processes. In K. Beswick, T. Muir, & J. Wells (Eds.), Proceedings of the 39th conference of IGPME (Vol. 4, pp. 201–208). Hobart: PME.

    Google Scholar 

  • STEM Task Force Report. (2014). Innovate: a blueprint for science, technology, engineering, and mathematics in California public education. Dublin, CA: Californians Dedicated to Education Foundation.

    Google Scholar 

  • Stillman, G. (2004). Strategies employed by upper secondary students for overcoming or exploiting conditions affecting accessibility of applications task. Mathematics Education Research Journal, 16(1), 41–70.

    Article  Google Scholar 

  • Stillman, G. (2010). Implementing applications and modelling in secondary school: issues for teaching and learning. In B. Kaur & J. Dindyal (Eds.), Mathematical applications and modelling (pp. 300–322). Singapore: World Scientific.

    Chapter  Google Scholar 

  • Stillman, G. (2011). Applying metacognitive knowledge and strategies in applications and modelling tasks at secondary school. In G. Kaiser, W. Blum, R. Borrromeo Ferri, & G. Stillman (Eds.), Trends in teaching and learning of mathematical modelling (pp. 165–180). Dordrecht: Springer.

    Chapter  Google Scholar 

  • Stillman, G., Brown, J., & Galbraith, P. (2010). Identifying challenges within transition phases of mathematical modelling activities at year 9. In R. L. Lesh, P. L. Galbraith, C. L. Haines, & A. Hurford (Eds.), Modeling students mathematical modeling competencies (pp. 385–398). New York: Springer.

    Chapter  Google Scholar 

  • Stillman, G., & Brown, J. (2014). Evidence of “implemented anticipation” in mathematising by beginning modellers. Mathematics Education Research Journal, 26(4), 763–789. doi:10.1007/s13394-014-0119-6.

    Article  Google Scholar 

  • Stillman, G., Brown, J., & Geiger, V. (2015). Facilitating mathematisation in modelling by beginning modellers in secondary schools. In G. A. Stillman, W. Blum, & M. S. Biembengut (Eds.), Mathematical modelling in education, research and practice: cultural, social, and cognitive influences (pp. 93–103). Cham: Springer.

    Chapter  Google Scholar 

  • Thomson, S., De Bortoli, L., & Underwood, C. (2016a). PISA 2015: a first look at Australia’s results. Melbourne: ACER.

    Google Scholar 

  • Thomson, S., Wernert, N., O’Grady, E., & Rodrigues, S. (2016b). TIMSS 2015: a first look at Australia’s results. Melbourne: ACER.

    Google Scholar 

  • Treilibs, V. (1979). Formulation processes in mathematical modelling. – Thesis submitted to the University of Nottingham for the degree of Master of Philosophy.

  • Wijaya, A., Van den Heuvel-Panhuizen, M., Doorman, M., & Robitzsch, A. (2014). Difficulties in solving context based PISA mathematics tasks: an analysis of students’ errors. The Mathematics Enthusiast, 11(3), 555–584.

    Google Scholar 

  • Witzel, A., & Reiter, H. (2012). The problem-centred interview. London: Sage.

    Book  Google Scholar 

  • Wood, L., Petocz, P., & Reid, A. (2012). Becoming a mathematician: an international perspective. Dordrecht: Springer.

    Book  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vincent Geiger.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Geiger, V., Stillman, G., Brown, J. et al. Using mathematics to solve real world problems: the role of enablers. Math Ed Res J 30, 7–19 (2018). https://doi.org/10.1007/s13394-017-0217-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13394-017-0217-3

Keywords

Navigation