Skip to main content

Advertisement

Log in

Demonstration lessons in mathematics education: teachers’ observation foci and intended changes in practice

  • Original Article
  • Published:
Mathematics Education Research Journal Aims and scope Submit manuscript

Abstract

As part of a teacher professional learning project in mathematics education, university mathematics educators taught demonstration lessons in project primary schools. These lessons were part of a “pre-brief, teaching, and debrief” process, in which up to eight teachers observed each lesson. Using brief questionnaires completed in advance of the lesson, during the lesson, following the debrief, and several weeks later, data were collected on teachers’ intended and actual observation foci and any anticipated changes in their beliefs and practices arising from the experience. There were several common themes in teachers’ intended observations, including a focus on questioning, catering for individual differences, and building student engagement. As evident in other research, teachers’ intended and actual observations gave greater attention to teacher actions and decision making than to student learning and thinking. In this paper, we situate demonstration lessons within teacher professional learning models, describe the features of our model, summarise teacher data, and discuss issues arising from our work.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1

Similar content being viewed by others

Notes

  1. We acknowledge gratefully the support of the Catholic Education Office (Melbourne), that of Gerard Lewis and Paul Sedunary in particular, in the funding of this research and the professional collegiality of the School Advisers Mathematics (CEOM), the School Mathematics Leaders and teachers, with whom we collaborate in CTLM schools.

References

  • Ball, D. L., & Bass, H. (2000). Interweaving content and pedagogy in teaching and learning to teach: knowing and using mathematics. In J. Boaler (Ed.), Multiple perspectives on learning and teaching (pp. 83–104). Westport: Ablex.

    Google Scholar 

  • Ball, D. L., Thames, M. H., & Phelps, G. (2008). Content knowledge for teaching: what makes it special? Journal of Teacher Education, 59, 389–407.

    Article  Google Scholar 

  • Bazeley, P. (2007). Qualitative data analysis with NVivo. London: Sage.

    Google Scholar 

  • Borko, H., Jacobs, J., Eiteljorg, E., & Pittman, M. E. (2008). Video as a tool for fostering productive discussions in mathematics professional development. Teaching and Teacher Education, 24, 417–436.

    Article  Google Scholar 

  • Boyle, B., Lamprianou, I., & Boyle, T. (2005). A longitudinal study of teacher change: what makes professional development effective? Report of the second year of the study. School Effectiveness and School Improvement, 16(1), 1–27.

    Article  Google Scholar 

  • Bruce, C. D., Ross. J., Flynn, T., & McPherson, R. (2009). Lesson study and demonstration classrooms: Examining the effects of two models of teacher professional development. http://www.tmerc.ca/digitalpapers/samples/WholeResearchStory.pdf. Accessed: 26 August 2011

  • Butler, D. L., Lauscher, H. N., Jarvis-Selinger, S., & Beckingham, B. (2004). Collaboration and self regulation in teachers’ professional development. Teaching and Teacher Education, 20, 435–455.

    Article  Google Scholar 

  • Clarke, D. M. (1994). Ten key principles from research for the professional development of mathematics teachers. In D. B. Aichele & A. F. Croxford (Eds.), Professional development for teachers of mathematics (56th yearbook of the national council of teachers of mathematics) (pp. 37–48). Reston: NCTM.

    Google Scholar 

  • Clarke, D. M., & Clarke, B. A. (2004). Mathematics teaching in grades k-2: painting a picture of challenging, supportive, and effective classrooms. In R. N. Rubenstein & G. W. Bright (Eds.), Perspectives on the teaching of mathematics (66th yearbook of the national council of teachers of mathematics) (pp. 67–81). Reston: NCTM.

    Google Scholar 

  • Clarke, D., & Hollingworth, H. (2002). Elaborating a model of teacher professional growth. Teaching and Teacher Education, 18, 947–967.

    Article  Google Scholar 

  • Corbin, J., & Strauss, A. L. (2008). Basics of qualitative research: grounded theory procedures and techniques (3rd ed.). Thousand Oaks: Sage.

    Google Scholar 

  • Creswell, J. W. (2007). Qualitative inquiry and research design: choosing among five approaches (2nd ed.). Thousand Oaks: Sage.

    Google Scholar 

  • Davis, N., & Walker, K. (2005). Learning to notice: one aspect of teachers’ content knowledge in the numeracy classroom. In P. Clarkson, A. Downton, D. Gronn, M. Horne, A. McDonough, R. Pierce, & A. Roche (Eds.), Building connections: theory, research and practice (Proceedings of the 28th annual conference of the Mathematics Education Research Group of Australasia, vol. 1) (pp. 273–280). Sydney: MERGA.

    Google Scholar 

  • Feuerstein, A. (2000). School characteristics and parent involvement: influences on participation in children’s schools. The Journal of Educational Research, 94(1), 29–39.

    Article  Google Scholar 

  • Fernandez, C. (2005). Lesson study: a means for elementary teachers to develop the knowledge of mathematics needed for reform-minded teaching? Mathematical Thinking and Learning, 7(4), 265–289.

    Article  Google Scholar 

  • Fernandez, C., Cannon, J., & Chokshi, S. (2003). A US–Japan lesson study collaboration reveals critical lenses for examining practice. Teaching and Teacher Education, 19, 171–185.

    Article  Google Scholar 

  • Ghousseni, H., & Sleep, L. (2011). Making practice studyable. ZDM Mathematics Education, 42(1), 147–160.

    Article  Google Scholar 

  • Goldsmith, L. T., Doerr, H., & Lewis, C. (2009). Opening the black box of teacher learning: Shifts in attention. In M. Tzekaki, M. Kaldrimidou, & H. Sakonidis (Eds.), In search of theories in mathematics education (Proceedings of the 33rd annual conference of the International Group of Psychology of Mathematics Education, vol. 1) (pp. 97–104). Thessaloniki: PME.

    Google Scholar 

  • Goldin, G. A., & Shteingold, N. (2001). Systems of representations and the development of mathematical concepts. In A. Cuoco & F. Curcio (Eds.), The roles of representation in school mathematics (pp. 1–23). Reston: National Council of Teachers of Mathematics.

    Google Scholar 

  • Grierson, A. L., & Gallagher, T. L. (2009). Seeing is believing: creating a catalyst for teacher change through a demonstration classroom professional development initiative. Professional Development in Education, 35(4), 567–584.

    Article  Google Scholar 

  • Guskey, T. R. (1986). Staff development and the process of teacher change. Educational Researcher, 15(5), 5–12.

    Article  Google Scholar 

  • Higgins, J., & Parsons, R. (2009). A successful professional development model in mathematics. Journal of Teacher Education, 60(3), 231–242.

    Article  Google Scholar 

  • Joyce, B., & Showers, B. (1980). Improving inservice training: the messages of research. Educational Leadership, 37(5), 379–385.

    Google Scholar 

  • Lewis, C. (2002). Lesson study: a handbook of teacher-led instructional change. Philadelphia: Research for Better Schools.

    Google Scholar 

  • Lewis, C., Perry, R., & Hurd, J. (2004). A deeper look at lesson study. Educational Leadership, 62(5), 18–23.

    Google Scholar 

  • Loucks-Horsley, S., Love, N., Stiles, K. E., Mundry, S., & Hewson, P. W. (2003). Designing professional development for teachers of science and mathematics. Thousand Oaks: Sage.

    Google Scholar 

  • McDonough, A., & Clarke, D. M. (2003). Describing the practice of effective teachers of mathematics in the early years. In N. A. Pateman, B. J. Dougherty, & J. T. Zilliox (Eds.), Proceedings of the 2003 joints meeting of the international group for the psychology of mathematics education and the psychology of mathematics education group North America (vol. 3) (pp. 261–268). Hawaii: University of Hawaii.

    Google Scholar 

  • Miles, M. B., & Huberman, A. M. (1994). Qualitative data analysis (2nd ed.). Thousand Oaks: Sage.

    Google Scholar 

  • Putman, J. (1985). Perceived benefits and limitations of teacher educator demonstration lessons. Journal of Teacher Education, 36, 36–41.

    Article  Google Scholar 

  • Rowe, M. B. (1974). Wait-time and rewards as instructional variables, their influence on language, logic, and fate control: part one—wait time. Journal of Research in Science Teaching, 11(2), 81–94.

    Article  Google Scholar 

  • Saphier, J., & West, L. (2010). How coaches can maximise student learning. Phi Delta Kappan, 91(4), 46–50.

    Google Scholar 

  • Shulman, L. (1986). Those who understand: knowledge growth in teaching. Educational Researcher, 15(2), 4–14.

    Article  Google Scholar 

  • Sullivan, P. (2011). Teaching mathematics: using research-informed strategies (Australian Education Review, 59). Camberwell: Australian Council for Educational Research.

    Google Scholar 

  • Takashashi, A., & Yoshida, M. (2004). Ideas for establishing lesson-study communities. Teaching Children Mathematics, 10(9), 436–443.

    Google Scholar 

  • Tytler, R., Smith, R., Grover, P., & Brown, S. (2006). A comparison of professional development models for teachers of primary mathematics and science. Journal of Teacher Education, 27(3), 193–214.

    Google Scholar 

  • Van Driel, J. H., & Berry, A. (2012). Teacher professional development focusing on pedagogical content knowledge. Educational Researcher, 41(1), 26–28.

    Article  Google Scholar 

  • van Es, E. A., & Sherin, M. G. (2008). Mathematics teachers’ “learning to notice” in the context of a video club. Teaching and Teacher Education, 24, 244–276.

    Article  Google Scholar 

  • West, L., & Curcio, F. R. (2004). Collaboration sites: teacher-centred professional development in mathematics. Teaching Children Mathematics, 10(5), 268–273.

    Google Scholar 

  • White, A. L., & Southwell, B. (2003). Lesson study: a model of professional development for teachers of mathematics in years 7 to 12. In L. Bragg, C. Campbell, G. Herbert, & J. Mousley (Eds.), Mathematics education research: Innovation, networking, opportunity (Proceedings of the 26th annual conference of the Mathematics Education Research Group of Australasia, Vol. 2) (pp. 744–751). Pymble: MERGA.

    Google Scholar 

  • Yan, W., & Lin, Q. (2005). Parent involvement and mathematics achievement: contrast across racial and ethnic groups. The Journal of Educational Research, 99(2), 116–127.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Doug Clarke or Anne Roche.

Appendix

Appendix

Appendix 1: demonstration lesson teacher proforma

figure a

Rights and permissions

Reprints and permissions

About this article

Cite this article

Clarke, D., Roche, A., Wilkie, K. et al. Demonstration lessons in mathematics education: teachers’ observation foci and intended changes in practice. Math Ed Res J 25, 207–230 (2013). https://doi.org/10.1007/s13394-012-0058-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13394-012-0058-z

Keywords

Navigation