Skip to main content
Log in

Modeling of TiC-N Thin Film Coating Process on Drills Using Particle Swarm Optimization Algorithm

  • Research Article - Mechanical Engineering
  • Published:
Arabian Journal for Science and Engineering Aims and scope Submit manuscript

Abstract

The prediction of maximum hardness in thin-film coating on high speed cutting drills is an essential prerequisite for developing drilling and it is depended on many factors such as ion bombard time, sub layer temperature, work and chamber pressure. This paper proposes the estimation of hardness of titanium nitride carbide (TIC-N) thin-film layers as protective of high speed cutting drills using Improved Particle Swarm Optimization-based Neural Network (PSONN). Based on the obtained experimental data during the process of chemical vapor deposition (CVD) and physical vapor deposition (PVD), the modeling of the coating variables for achieving the maximum hardness of titanium thin-film layers is performed. By comparison the experimental results with model estimation the accuracy of the system was approximately 97.47 % acquired while back propagation (BP) had 95.5 % precision.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Aizawa T., Kihara J.: Materials of PVD/CVD coated WC/Co super hard alloys y the ultrasonic microscopy. Nondestruct. Test. Eva. 8(1), 999–1011 (1992)

    Article  Google Scholar 

  2. Prengel H.G., Jindal P.C., Wendt K.H.: A new class of high performance PVD coatings for cutting tools. J. Surf. Coat. Technol. 139, 25–41 (2001)

    Article  Google Scholar 

  3. Ranea, C.: Wear resistance of thin coatings based on titanium. In: International Conference on Tribology Kayseri, pp. 783–788 (2002)

  4. Polini R., Mantini F.P., Braic M., Amar M., Ahmed W., Taylor H., Jackson M.J.: Effects of Ti- and Zr-based interlayer coatings on hot-filament chemical vapor deposition of diamond on high-speed steel. J. Mater. Eng. Perform. 15, 201–207 (2006)

    Article  Google Scholar 

  5. Keles-Ozgul K.O.: Optimization of ARC-PVD TiN coating process parameters by Taguchi technique. Qual. Eng. 12, 29–36 (1999)

    Article  Google Scholar 

  6. Shtansky D.V., Levashov E.A., Sheveiko A.N., Moore J.J.: Optimization of PVD parameters for the deposition of ultrahard Ti–Si–B–N coatings. J. Mater. Synth. Process. 7, 187–193 (1999)

    Article  Google Scholar 

  7. Singh K., Grover A.K., Totlani M.K., Suri A.K.: Magnetron sputtered TiN coatings modified by chromium, nickel and electroless nickel (EN) interlayers on mild steel. Miner. Process. Extr. Metall. Rev. 22, 651–679 (2001)

    Article  Google Scholar 

  8. Assis S.L.; Costa I. : Electrochemical evaluation of Ti–13Nb–13Zr. Ti–6Al–4V and Ti–6Al–7Nb alloys for biomedical application by long-term immersion tests. J. Mater. Corros. 58(5), 329–333 (2007)

    Google Scholar 

  9. Maria, E.; Lima, C.X.; da Silva, W.J.; Moura, J.S.; Faot, F.; Bel Cury, A.A.D.: Evaluation of surface characteristics of Ti–6Al–4V and Tilite alloys used for implant abutments. J. Braz. Oral Res. 20(4), 307–311 (2006

    Google Scholar 

  10. Quirynen M., Bollen C.M., Willems G., van Steenberghe D.: Comparison of surface characteristics of six commercially pure titanium abutments. International. J. Oral Maxillofac. Implant. 9, 71–76 (1994)

    Google Scholar 

  11. Speelman J.A., Collaert B., Klinge B.: Evaluation of different methods to clean titanium abutments. A scanning electron microscopic study. Clin. Oral Implant. Res. 31, 20–127 (1992)

    Google Scholar 

  12. Alger, D.L.; Steinberg, R.: An X-ray monitor for measurement of a titanium tritide target thickness. Technical Report presented at International Meeting of the American Nuclear Society. Washington, D.C., November 2–16 (1972)

  13. Marko, X.; Harvey, N.E.; Rodak, D.; Talagala, P.; Padmanabhan, K.R.; Naik, R., Cheng, Y.T.: Photocatalytic measurements of titanium dioxide films deposited with metal organic decomposition. J. Appl. Phys. 36, 2840 (1997)

    Google Scholar 

  14. Woollam J.A.: Overview of variable angle spectroscopic ellipsometry (VASE), part I: basic theory and typical applications. Opt. Metrol. 72, 3 (1999)

    Google Scholar 

  15. Roth, J.A.: Closed-loop control of resonant tunneling diode barrier thickness using in situ spectroscopic ellipsometry. J. Vac. Sci. Technol. 18, 1439 (2000)

    Google Scholar 

  16. Morton, D.E.; Vacuum, D.; Moorestown, L.; Blaine Johs, N.J.: Optical monitoring of thin-films using spectroscopic ellipsometry. In: 45th Annual Technical Conference Proceedings, pp. 2–5 (2002)

  17. Buitrago, B.; Irausquin, I.; Mendoza, J.: Ultrasonic evaluation of a beta-C titanium alloy. In: 4th International conference on NDT, 11–14 October (2007)

  18. Kumar, A.; Laha, K.; Jayakumar, T.; Rao, K.; Raj, B.: Comprehensive microstructural characterization in modified 9Cr-1Mo ferritic steel by ultrasonic measurements. Metall. Mater. Trans. A. 33A, 1617–1626 (2002)

    Google Scholar 

  19. Kumar, A.; Jayakumar, T.; Raj, B.; Ray, K.: Characterization of solutionizing behavior in VT14 titanium alloy using ultrasonic velocity and attenuation measurements. Mater. Sci. Eng. A360, 58–64 (2003)

    Google Scholar 

  20. Wincheski, B.: Eddy current COPV overwrap and liner thickness system and data analysis for 40-Inch Kevlar COPVs SN002 and SN027. Langley Research Center, Hampton Virginia, Technical report of The NASA STI Program Office, pp. 2–5 (2008)

  21. Kuo C.F.J., Wu Y.S.: Application of a Taguchi-based neural network prediction design of the film coating process for polymer blends. Int. J. Adv. Manuf. Technol. 27, 455–461 (2006)

    Article  Google Scholar 

  22. Zhang G., Guessasma S., Liao H., Coddet C., Bordes J.M.: Investigation of friction and wear behaviour of SiC-filled PEEK coating using artificial neural network. Surf. Coat. Technol. 200, 2610–2617 (2006)

    Article  Google Scholar 

  23. Juang C.F: A hybrid genetic algorithm and particle swarm optimization for recurrent network design. IEEE Trans. Syst. Man Cybern. 34, 997–1006 (2004)

    Article  Google Scholar 

  24. Razfar M.R., Zadeh M.R.Z.: Optimum damage and surface roughness prediction in end milling glass fiber-reinforced plastics, using neural network and genetic algorithm. Proc. IMechE Part B: J. Eng. Manuf. 223, 653–664 (2009)

    Article  Google Scholar 

  25. Oktem H., Erzurumlu T., Erzincanli F.: Prediction of minimum surface roughness in end milling mold parts using neural network and genetic algorithm. J. Mater. Des. 27, 735–744 (2006)

    Article  Google Scholar 

  26. Yu J., Wang S., Xi L.: Evolving artificial neural networks using an improved PSO and DPSO. Neurocomputing. 71, 1054–1060 (2008)

    Article  Google Scholar 

  27. Coelho L.S., Lee C.-S.: Solving economic load dispatch problems in power systems using chaotic and Gaussian particle swarm optimization approaches. Int. J. Elec. Power Energy Syst. 30(5), 297–307 (2008)

    Article  Google Scholar 

  28. Guo Y.W., Mileham A.R., Owen G.W., Maropoulos P.G., Li W.D.: Operation sequencing optimization for five-axis prismatic parts using a particle swarm optimization approach. Proc. IMechE Part B: J. Eng. Manuf. 223, 485–497 (2008)

    Article  Google Scholar 

  29. Robinson J., Rahmat-Samii Y.: Particle swarm optimization in electromagnetics. IEEE Trans. Antennas Propag. 52, 397 (2004)

    Article  MathSciNet  Google Scholar 

  30. Dib, N.; Khodier, M.: Design and optimization of multiband Wilkinson power divider. Int. J. RF Microw. Comput.-Aided Eng. 18, 14 (2008)

    Google Scholar 

  31. Afshinmanesh, F.; Marandi, A.; Shahabadi, M.: Design of a single-feed dual-band dual-polarized printed microstrip antenna using a Boolean particle swarm optimization. IEEE Trans. Antennas Propag. 56, 1845 (2008)

    Google Scholar 

  32. Goudos S.K., Moysiadou V., Samaras T., Siakavara K.: Application of a comprehensive learning particle. IEEE Xplore. 9, 125–129 (2010)

    Google Scholar 

  33. Coelho L.D.: Gaussian quantum-behaved particle swarm optimization approaches for constrained engineering design problems. Expert Syst. Appl. 37, 1676–1683 (2010)

    Article  MathSciNet  Google Scholar 

  34. Eberhart, R.C.; Kennedy, J.: A new optimizer using particle swarm theory. In: Proceedings of 6th International Symposium on Micro Machine and Human Science, pp. 39–43 (1995)

  35. Kennedy, J.; Eberhart, R.C.: Particle swarm optimization. In: Proceedings of IEEE International Conference on Neural Networks, pp. 1942–1948 (1995)

  36. Yu J., Wang S., Xi L.: Evolving artificial neural networks using an improved PSO and DPSO. Neurocomputing. 71, 1054–1060 (2008)

    Article  Google Scholar 

  37. Chang, J.L.; Wang, X.D.: Identifying multi-exponential model parameters of gas sensor from transient response data using particle swarm optimization. In: Conference on System Science and Simulation in Engineering, pp. 194–197 (2010)

  38. Panda S., Padhy N.P.: Comparison of particle swarm optimization and genetic algorithm for FACTS-based controller design. Appl. Soft Comput. 8(4), 1418–1427 (2008)

    Article  Google Scholar 

  39. Lin, J.H.; Huang, H.H.: An approach to particle motion in swarm optimization for complex systems. In: 10th World Multi-Conference on Systemics, Cybernetics and Informatics, Vol III, pp. 324–329 (2006)

  40. Liu B., Wang L., Jin Y.H., Tang F., Huang D.X.: Improved particle swarm optimization combined with chaos. Chaos Solitons Fractals. 25(5), 1261–1271 (2005)

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Amir Mahyar Khorasani.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Khorasani, A.M., Asadnia, M. & Saadatkia, P. Modeling of TiC-N Thin Film Coating Process on Drills Using Particle Swarm Optimization Algorithm. Arab J Sci Eng 38, 1565–1571 (2013). https://doi.org/10.1007/s13369-013-0600-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13369-013-0600-7

Keywords

Navigation