Skip to main content
Log in

Using Twitter to learn about the autism community

  • Original Article
  • Published:
Social Network Analysis and Mining Aims and scope Submit manuscript

Abstract

Considering the raising socio-economic burden of autism spectrum disorder (ASD), timely and evidence-driven public policy decision-making and communication of the latest guidelines pertaining to the treatment and management of the disorder is crucial. Yet evidence suggests that policy makers and medical practitioners do not always have a good understanding of the practices and relevant beliefs of ASD-afflicted individuals’ carers who often follow questionable recommendations and adopt advice poorly supported by scientific data. The key goal of the present work is to explore the idea that Twitter, as a highly popular platform for information exchange, could be used as a data-mining source to learn about the population affected by ASD—their behaviour, concerns, needs, etc. To this end, using a large data set of over 11 million harvested tweets as the basis for our investigation, we describe a series of experiments which examine a range of linguistic and semantic aspects of messages posted by individuals interested in ASD. Our findings, the first of their nature in the published scientific literature, strongly motivate additional research on this topic and present a methodological basis for further work.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  • Agarwal A, Xie B, Vovsha I, Rambow O, Passonneau R (2011) Sentiment analysis of Twitter data. In: Proceedings of the workshop on language in social, media, pp 30–38

  • American Psychiatric Association (2013) Autism spectrum disorder fact sheet. American Psychiatric Publishing, Arlington

  • Asur S, Huberman BA (2010) Predicting the future with social media. In: Proceedings of the IEEE/ACM international conference on web intelligence and intelligent agent technology, pp 492–499

  • Arandjelović O (2010) Automatic attribution of ancient Roman imperial coins. In: Procedings of the IEEE conference on computer vision and pattern recognition, pp 1728–1734

  • Arandjelović O (2012) Object matching using boundary descriptors. In: Proceedings of the British machine vision conference. doi:10.5244/C.26.85

  • Arandjelović O (2012) Reading ancient coins: automatically identifying denarii using obverse legend seeded retrieval. In: Proceedings of the European conference on computer vision, vol 4, pp 317–330

  • Baucom E, Sanjari A, Liu X, Chen M (2013) Mirroring the real world in social media: Twitter, geolocation, and sentiment analysis. In: Proceedings of the international workshop on mining unstructured big data using natural language processing, pp 61–68

  • Baxter AJ, Brugha TS, Erskine HE, Scheurer RW, Vos T, Scott JG (2015) The epidemiology and global burden of autism spectrum disorders. Psychol Med 45(3):601–613

    Article  Google Scholar 

  • Beykikhoshk A, Arandjelović O, Phung D, Venkatesh S, Caelli T (2014) Data-mining Twitter and the autism spectrum disorder: a pilot study. In: Proceedings of the IEEE/ACM international conference on advances in social network analysis and mining, pp 349–356

  • Beykikhoshk A, Arandjelović O, Phung D, Venkatesh S (2015) Hierarchical Dirichlet process for tracking complex topical structure evolution and its application to autism research literature. In: Proceedings of the Pacific-Asia conference on knowledge discovery and data mining, vol 1, pp 550–562

  • Bifet A, Frank E (2010) Sentiment knowledge discovery in Twitter streaming data. In: Proceedings of the international conference on discovery science, pp 1–15

  • Bishop CM (2007) Pattern recognition and machine learning. Springer, New York

    Google Scholar 

  • Bollen J, Mao H, Pepe A (2011) Modeling public mood and emotion: Twitter sentiment and socio-economic phenomena. In: Proceedings of the international conference on weblogs and social media, pp 450–453

  • Bouchaud JP, Mézard M (2000) Wealth condensation in a simple model of economy. Phys A 282(3):536–545

    Article  Google Scholar 

  • Clauset A, Shalizi CR, Newman ME (2009) Power-law distributions in empirical data. SIAM Rev 51(4):661–703

    Article  MATH  MathSciNet  Google Scholar 

  • Chew C, Eysenbach G (2010) Pandemics in the age of Twitter: content analysis of Tweets during the 2009 H1N1 outbreak. PLoS One 5(11):e14118

    Article  Google Scholar 

  • Culotta A (2010) Towards detecting influenza epidemics by analyzing Twitter messages. In: Proceedings of the ACM workshop on social media analytics, pp 115–122

  • Danial JT, Wood JJ (2013) Cognitive behavioral therapy for children with autism: review and considerations for future research. J Dev Behav Pediatr 34(9):702–715

    Article  Google Scholar 

  • Dumais ST (2004) Latent semantic analysis. Ann Rev Inf Sci Technol 38(1):188–230

    Article  Google Scholar 

  • Fombonne E (2009) Epidemiology of pervasive developmental disorders. J Pediatr Res 65(6):591–598

    Article  Google Scholar 

  • Geier DA, Kern JK, Davis G, King PG, Adams JB, Young JL, Geier MR (2011) A prospective double-blind, randomized clinical trial of levocarnitine to treat autism spectrum disorders. J Med Sci Monit 17(6):PI15–PI23

    Google Scholar 

  • Gray DE (1993) Perceptions of stigma: the parents of autistic children. Sociol Health Illn 15(1):102–120

    Article  Google Scholar 

  • Harshavardhan A, Gandhe A, Lazarus R, Yu SH, Liu B (2011) Predicting flu trends using Twitter data. In: Proceedings of the IEEE conference on computer communications, pp 702–707

  • Harrington JW, Rosen L, Garnecho A, Patrick PA (2006) Parental perceptions and use of complementary and alternative medicine practices for children with autistic spectrum disorders in private practice. J Dev Behav Pediatr 27(2):S156–S161

    Article  Google Scholar 

  • Himelboim I, Han JY (2014) Cancer talk on Twitter: community structure and information sources in breast and prostate cancer social networks. J Health Commun 19(2):210–225

    Article  Google Scholar 

  • Jashinsky J, Burton SH, Hanson CL, West J, Giraud-Carrier C, Barnes MD, Argyle T (2014) Tracking suicide risk factors through Twitter in the US. Crisis 35(1):51–59

    Article  Google Scholar 

  • Jiang L, Yu M, Zhou M, Liu X, Zhao T (2011) Target-dependent Twitter sentiment classification. In: Proceedings of the annual meeting of the association for, computational linguistics, pp 151–160

  • Kanner L (1946) Irrelevant and metaphorical language in early infantile autism. Am J Psychiatry 103(2):242–246

    Article  Google Scholar 

  • Levy SE, Mandell DS, Schultz RT (2009) Autism. Lancet 374(9701):1627–1638

    Article  Google Scholar 

  • Lewis DD, Ringuette M (1994) A comparison of two learning algorithms for text categorization. In: Proceedings of the annual symposium on document analysis and information retrieval, vol 33, pp 81–93

  • Li J, Cardie C (2013) Early stage influenza detection from Twitter. arXiv preprint: 1309.7340

  • Miles JH (2011) Autism spectrum disorders—a genetics review. Genet Med 13:278–294

    Article  MathSciNet  Google Scholar 

  • Mitchell L, Frank MR, Harris KD, Dodds PS, Danforth CM (2013) The geography of happiness: connecting Twitter sentiment and expression, demographics, and objective characteristics of place. PLoS One 8(5):e64417

    Article  Google Scholar 

  • Newton AT, Kramer ADI, McIntosh DN (2009) Autism online: a comparison of word usage in bloggers with and without autism spectrum disorders. In: Proceedings of the SIGCHI conference on human factors in computing systems, pp 463–466

  • Owoputi O, O’Connor B, Dyer C, Gimpel K, Schneider N, Smith NA (2013) Improved part-of-speech tagging for online conversational text with word clusters. In: Proceedings of the North American chapter of the association for computational linguistics conference on human language technologies, pp 380–390

  • Paul MJ, Dredze M (2011) You are what you tweet: analyzing Twitter for public health. In: Proceedings of the international conference on weblogs and social media, pp 265–272

  • Paul MJ, Dredze M (2012) A model for mining public health topics from Twitter. Health 11:16–16

    Google Scholar 

  • Perkins J (2010) Python text processing with NLTK 2.0 cookbook. Packt Publishing, Birmingham

    Google Scholar 

  • Prier KW, Smith MS, Giraud-Carrier C, Hanson CL (2011) Identifying health-related topics on Twitter, an exploration of tobacco-related tweets as a test topic. In: Proceedings of the international conference on social computing, behavioral-cultural modeling, and prediction, pp 18–25

  • Robertson S (2004) Understanding inverse document frequency: on theoretical arguments for IDF. J Doc 60(5):503–520

    Article  Google Scholar 

  • Robillard JM, Johnson TW, Hennessey C, Beattie BL, Illes J (2013) Aging 2.0: health information about dementia on Twitter. PLoS One 8(7):e69861

    Article  Google Scholar 

  • Robinson B, Power R, Cameron M (2013) An evidence based earthquake detector using Twitter. In: Proceedings of the workshop on language processing and crisis, information, pp 1–9

  • Richardson LF (1948) Variation of the frequency of fatal quarrels with magnitude. J Am Stat Assoc 43(244):523–546

    Article  Google Scholar 

  • Sakaki T, Okazaki M, Matsuo Y (2010) Earthquake shakes Twitter users: real-time event detection by social sensors. In: Proceedings of the international conference on world wide web, pp 851–860

  • Scanfeld D, Scanfeld V, Larson EL (2010) Dissemination of health information through social networks: Twitter and antibiotics. Am J Infect Control 38(3):182–188

    Article  Google Scholar 

  • Trembath D, Balandin S, Rossi C (2005) Cross+cultural practice and autism. J Intellect Dev Disabil 4(30):240–242

    Article  Google Scholar 

  • Verma S, Vieweg S, Corvey WJ, Palen L, Martin JH, Palmer H, Schram A, Anderson KM (2011) Natural language processing to the rescue? Extracting “situational awareness” tweets during mass emergency. In: Proceedings of the international conference on weblogs and social media, pp 385–392

  • Wakefield AJ, Murch SH, Anthony A, Linnell J, Casson DM, Malik M, Berelowitz M, Dhillon AP, Thomson MA, Harvey P (1998) RETRACTED: Ileal-lymphoid-nodular hyperplasia, non-specific colitis, and pervasive developmental disorder in children. Lancet 351(9103):637–641

    Article  Google Scholar 

  • Warren Z, McPheeters ML, Sathe N, Foss-Feig JH, Glasser A, Veenstra-VanderWeele J (2011) A systematic review of early intensive intervention for autism spectrum disorders. Pediatrics 127(5):e1303–e1311

    Article  Google Scholar 

  • Yu H-F, Huang F-L, Lin C-J (2011) Dual coordinate descent methods for logistic regression and maximum entropy models. Mach Learn 85(1–2):41–75

    Article  MATH  MathSciNet  Google Scholar 

Download references

Acknowledgments

The authors would like to express their sincere gratitude to the anonymous reviewers whose constructive feedback on our original work (Beykikhoshk et al. 2014) greatly helped shape the present paper. Specifically, we are thankful for their suggestions for additional experiments which were described herein.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ognjen Arandjelović.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Beykikhoshk, A., Arandjelović, O., Phung, D. et al. Using Twitter to learn about the autism community. Soc. Netw. Anal. Min. 5, 22 (2015). https://doi.org/10.1007/s13278-015-0261-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s13278-015-0261-5

Keywords

Navigation