Skip to main content

Advertisement

Log in

RF rectifiers for EM power harvesting in a Deep Brain Stimulating device

  • Technical Paper
  • Published:
Australasian Physical & Engineering Sciences in Medicine Aims and scope Submit manuscript

Abstract

A passive deep brain stimulation (DBS) device can be equipped with a rectenna, consisting of an antenna and a rectifier, to harvest energy from electromagnetic fields for its operation. This paper presents optimization of radio frequency rectifier circuits for wireless energy harvesting in a passive head-mountable DBS device. The aim is to achieve a compact size, high conversion efficiency, and high output voltage rectifier. Four different rectifiers based on the Delon doubler, Greinacher voltage tripler, Delon voltage quadrupler, and 2-stage charge pumped architectures are designed, simulated, fabricated, and evaluated. The design and simulation are conducted using Agilent Genesys at operating frequency of 915 MHz. A dielectric substrate of FR-4 with thickness of 1.6 mm, and surface mount devices (SMD) components are used to fabricate the designed rectifiers. The performance of the fabricated rectifiers is evaluated using a 915 MHz radio frequency (RF) energy source. The maximum measured conversion efficiency of the Delon doubler, Greinacher tripler, Delon quadrupler, and 2-stage charge pumped rectifiers are 78, 75, 73, and 76 % at −5 dBm input power and for load resistances of 5–15 kΩ. The conversion efficiency of the rectifiers decreases significantly with the increase in the input power level. The Delon doubler rectifier provides the highest efficiency at both −5 and 5 dBm input power levels, whereas the Delon quadrupler rectifier gives the lowest efficiency for the same inputs. By considering both efficiency and DC output voltage, the charge pump rectifier outperforms the other three rectifiers. Accordingly, the optimised 2-stage charge pumped rectifier is used together with an antenna to harvest energy in our DBS device.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19

Similar content being viewed by others

References

  1. Anderson RJ, Frye MA, Abulseoud OA, Lee KH, McGillivray JA, Berk M, Tye SJ (2012) Deep brain stimulation for treatment-resistant depression: efficacy, safety and mechanisms of action. Neurosci Biobehav Rev 36:1920–1933

    Article  PubMed  Google Scholar 

  2. Kouzani AZ, Abulseoud OA, Tye SJ, Hosain MK, Berk M (2013) A low power micro deep brain stimulation device for murine preclinical research. IEEE J Transl Eng Health Med 1:1–9

    Article  Google Scholar 

  3. Hosain MK, Kouzani A, Tye S (2012) Multi-layer implantable antenna for closed loop deep brain stimulation system, in International symposium on communications and information technologies (ISCIT), Gold Coast, pp 643–648

  4. Hosain MK, Kouzani AZ (2013) Assessment of functional and biological compatibility of antenna in a head-mountable DBS device using a rat model. Neurosci Biomed Eng 1:73–82

    Article  Google Scholar 

  5. Hosain MK, Kouzani AZ (2013) Electromagnetic energy harvesting in a head-mountable DBS device using a circular PIFA, in ICME International conference on complex medical engineering (CME), Beijing, pp 541–546

  6. Marian V, Allard B, Vollaire C, Verdier J (2012) Strategy for microwave energy harvesting from ambient field or a feeding source. IEEE Trans Power Electron 27:4481–4491

    Article  Google Scholar 

  7. Hosain M, Kouzani AZ, Tye S, Walder K, Kong L (2012) Design of a miniature UHF PIFA for DBS implants, in ICME international conference on complex medical engineering (CME), Japan, pp 485–489

  8. Jiang F, Guo D, Cheng L (2008) Analysis and design of power generator on passive RFID transponders, in Progress in electromagnetics research symposium, Hangzhou, pp 1357–1362

  9. Umeda T, Yoshida H, Sekine S, Fujita Y, Suzuki T, Otaka S (2006) A 950-MHz rectifier circuit for sensor network tags with 10-m distance. IEEE J Solid-State Circuits 41:35–41

    Article  Google Scholar 

  10. Le T, Mayaram K, Fiez T (2008) Efficient far-field radio frequency energy harvesting for passively powered sensor networks. IEEE J Solid-State Circuits 43:1287–1302

    Article  Google Scholar 

  11. Yuan F (2010) CMOS circuits for passive wireless microsystems. Springer, New York

    Google Scholar 

  12. Kotani K, Ito T (2007) High efficiency CMOS rectifier circuit with self-Vth-cancellation and power regulation functions for UHF RFIDs, in IEEE Asian solid-state circuits conference, ASSCC ‘07, Jeju, pp 119–122

  13. Shameli A, Safarian A, Rofougaran A, Rofougaran M, De Flaviis F (2007) Power harvester design for passive UHF RFID tag using a voltage boosting technique. IEEE Trans Microw Theory Tech 55:1089–1097

    Article  Google Scholar 

  14. Jabbar H, Song YS, Jeong TT (2010) RF energy harvesting system and circuits for charging of mobile devices. IEEE Trans Consum Electron 56:247–253

    Article  Google Scholar 

  15. Zbitou J, Latrach M, Toutain S (2006) Hybrid rectenna and monolithic integrated zero-bias microwave rectifier. IEEE Trans Microw Theory Tech 54:147–152

    Article  Google Scholar 

  16. Nimo A, Grgić D, Reindl LM (2012) Impedance optimization of wireless electromagnetic energy harvesters for maximum output efficiency at µw input power, in Proceedings of SPIE, pp 83410W1–14

  17. Rahimi A, Zorlu O, Muhtaroglu A, Kulah H (2012) Fully self-powered electromagnetic energy harvesting system with highly efficient dual rail output. IEEE Sens J 12:2287–2298

    Article  Google Scholar 

  18. Monti G, Congedo F, De Donno D, Tarricone L (2012) Monopole-based rectenna for microwave energy harvesting of UHF RFID systems. Prog Electromagn Res C 31:109–121

    Article  Google Scholar 

  19. Huang F-J, Lee C-M, Chang C-L, Chen L-K, Yo T-C, Luo C-H (2011) Rectenna application of miniaturized implantable antenna design for triple-band biotelemetry communication. IEEE Trans Antennas Propag 59:2646–2653

    Article  Google Scholar 

  20. Akkermans J, van Beurden M, Doodeman G, Visser H (2005) Analytical models for low-power rectenna design. IEEE Antennas Wirel Propag Lett 4:187–190

    Article  Google Scholar 

  21. Merabet B, Cirio L, Takhedmit H, Costa F, Vollaire C, Allard B, Picon O (2009) Low-cost converter for harvesting of microwave electromagnetic energy, in IEEE Energy conversion congress and exposition, ECCE, San Jose, pp 2592–2599

  22. Jongshin S, In-Young C, Young-June P, Min HS (2000) A new charge pump without degradation in threshold voltage due to body effect [memory applications]. IEEE J Solid-State Circuits 35:1227–1230

    Article  Google Scholar 

  23. Zhou Y, Froppier B, Razban T (2011) Study of a matching circuit effect on a microwave rectifier, in 11th Mediterranean microwave symposium (MMS), Hammamet, pp 29–33

  24. Wetenkamp S (1983) Comparison of single diode vs. dual diode detectors for microwave power detection, in IEEE MTT-S international microwave symposium digest, Boston, pp 361–363

  25. Cardoso AJ, de Carli LG, Galup-Montoro C, Schneider MC (2012) Analysis of the rectifier circuit valid down to its low-voltage limit. IEEE Trans Circuits Syst I Regul Pap 59:106–112

    Article  Google Scholar 

  26. Ungan T, Le Polozec X, Walker W, Reindl L (2009) RF energy harvesting design using high Q resonators, in IEEE MTT-S international microwave workshop on wireless sensing, local positioning, and RFID, IMWS, Cavtat, pp 1–4

  27. Bowick C, Ajluni C, Blyler J (2011) RF circuit design. Newnes, Burlington

    Google Scholar 

  28. Zhan A, Dang GT, Ren F, Cho H, Lee K-P, Pearton SJ, Chyi J-I, Nee T-Y, Chuo C-C (2001) Comparison of GaN pin and Schottky rectifier performance. IEEE Trans Electron Devices 48:407–411

  29. Maas SA (2003) Nonlinear microwave and RF circuits. Artech House on Demand, Norwood

    Google Scholar 

  30. Hosain MK, Kouzani AZ (2013) Design and analysis of efficient rectifiers for wireless power harvesting in DBS devices, in 8th IEEE conference on industrial electronics and applications (ICIEA), Melbourne, pp 651–655

  31. Selvakumaran R, Liu W, Boon-Hee S, Luo M, Sum YL (2009) Design of low power rectenna for wireless power transfer, in TENCON 2009–2009 IEEE Region 10 Conference, pp 1–5

  32. Karthaus U, Fischer M (2003) Fully integrated passive UHF RFID transponder IC with 16.7-μW minimum RF input power. IEEE J Solid-State Circuits 38:1602–1608

    Article  Google Scholar 

  33. Dobkin DM (2012) The RF in RFID: passive UHF RFID in practice, Kindle edition edn. Newnes, Amsterdam

    Google Scholar 

  34. Olgun U, Chi-Chih C, Volakis JL (2010) Wireless power harvesting with planar rectennas for 2.45 GHz RFIDs, in URSI international symposium on electromagnetic theory (EMTS), Berlin 2010, pp 329–331

  35. Nimo A, Grgić D, Reindl LM (2012) Optimization of passive low power wireless electromagnetic energy harvesters. Sensors 12:13636–13663

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  36. Pinuela M, Mitcheson PD, Lucyszyn S (2013) Ambient RF energy harvesting in urban and semi-urban environments. IEEE Trans Microw Theory Tech 61:2715–2726

    Article  Google Scholar 

  37. Taris T, Vigneras V, Fadel L (2012) A 900 MHz RF energy harvesting module, in 2012 IEEE 10th international new circuits and systems conference (NEWCAS), Montreal, pp 445–448

  38. Hosain MK, Kouzani AZ, Tye SJ, Abulseoud OA, Amiet A, Galehdar A, Kaynak A, Berk M (2014) Development of a compact rectenna for wireless powering of a head-mountable deep brain stimulation device. IEEE J Transl Eng Health Med 2:1–13

    Article  Google Scholar 

  39. Kouzani A, Tye S, Walder K, Kong L (2012) A head mountable deep brain stimulation device for laboratory Animals. In: Wu Y (ed) Advances in computer, communication, control & automation, vol 121. Springer, Berlin, pp 275–280

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Md. Kamal Hosain.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hosain, M.K., Kouzani, A.Z., Tye, S. et al. RF rectifiers for EM power harvesting in a Deep Brain Stimulating device. Australas Phys Eng Sci Med 38, 157–172 (2015). https://doi.org/10.1007/s13246-015-0328-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13246-015-0328-7

Keywords

Navigation