Skip to main content
Log in

In Vitro Validation of a Numerical Simulation of Leaflet Kinematics in a Polymeric Aortic Valve Under Physiological Conditions

  • Published:
Cardiovascular Engineering and Technology Aims and scope Submit manuscript

Abstract

This paper describes a computational method to simulate the non-linear structural deformation of a polymeric aortic valve under physiological conditions. Arbitrary Lagrangian–Eulerian method is incorporated in the fluid–structure interaction simulation, and then validated by comparing the predicted kinematics of the valve’s leaflets to in vitro measurements on a custom-made polymeric aortic valve. The predicted kinematics of the valve’s leaflets was in good agreement with the experimental results with a maximum error of 15% in a single cardiac cycle. The fluid–structure interaction model presented in this study can simulate structural behaviour of a stented valve with flexible leaflets, providing insight into the haemodynamic performance of a polymeric aortic valve.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10
Figure 11
Figure 12

Similar content being viewed by others

References

  1. Andersen, B. L. Psychological interventions for cancer patients to enhance the quality of life. J. Consult. Clin. Psychol. 60(4):552–568, 1992.

    Article  Google Scholar 

  2. ANSYS System coupling User’s Guide, R. 2013, ANSYS® Academic Research, Release 15, Help System. Ansys, Inc.

  3. Barratt-Boyes, B. G. Homograft aortic valve replacement in aortic incompetence and stenosis. Thorax 19:131, 1964.

    Article  Google Scholar 

  4. Barratt-Boyes, B. G., J. B. Lowe, D. S. Cole, and D. T. Kelly. Homograft valve replacement for aortic valve disease. Thorax 20:495, 1965.

    Article  Google Scholar 

  5. Benra, F.-K., et al. A comparison of one-way and two-way coupling methods for numerical analysis of fluid-structure interactions. J. Appl. Math. 2011:16, 2011.

    Article  MathSciNet  MATH  Google Scholar 

  6. Bluestein, D., and S. Einav. The effect of varying degrees of stenosis on the characteristics of turbulent pulsatile flow through heart valves. J. Biomech. 28(8):915–924, 1995.

    Article  Google Scholar 

  7. Boffi, D., and L. Gastaldi. A finite element approach for the immersed boundary method. Comput. Struct. 81(8–11):491–501, 2003.

    Article  MathSciNet  Google Scholar 

  8. Borazjani, I. A review of fluid-structure interaction simulations of prosthetic heart valves. J. Long Term Eff. Med. Implants 25(1–2):75–93, 2015.

    Article  Google Scholar 

  9. Carmody, C. J., et al. An approach to the simulation of fluid–structure interaction in the aortic valve. J. Biomech. 39(1):158–169, 2006.

    Article  Google Scholar 

  10. Cheng, R., Y. G. Lai, and K. B. Chandran. Three-dimensional fluid-structure interaction simulation of bileaflet mechanical heart valve flow dynamics. Ann. Biomed. Eng. 32(11):1471–1483, 2004.

    Article  Google Scholar 

  11. Choi, Y. J., V. Vedula, and R. Mittal. Computational study of the dynamics of a bileaflet mechanical heart valve in the mitral position. Ann. Biomed. Eng. 42(8):1668–1680, 2014.

    Article  Google Scholar 

  12. Claiborne, T. E., et al. Polymeric trileaflet prosthetic heart valves: evolution and path to clinical reality. Expert Rev. Med. Devices 9(6):577–594, 2012.

    Article  Google Scholar 

  13. Dubé, J., et al. Progress in developing a living human tissue-engineered tri-leaflet heart valve assembled from tissue produced by the self-assembly approach. Acta Biomater. 10(8):3563–3570, 2014.

    Article  Google Scholar 

  14. Ducci, A., et al. Hemodynamics in the Valsalva sinuses after transcatheter aortic valve implantation (TAVI). J. Heart Valve Dis. 22(5):688–696, 2013.

    Google Scholar 

  15. Dumont, K., et al. Validation of a fluid-structure interaction model of a heart valve using the dynamic mesh method in fluent. Comput Methods Biomech. Biomed. Eng. 7(3):139, 2004.

    Article  Google Scholar 

  16. Gharaie, S. H., and Y. Morsi. A novel design of a polymeric aortic valve. Int. J. Artif. Organs 38(5):259–270, 2015.

    Article  Google Scholar 

  17. Ha, H., et al. Assessment of turbulent viscous stress using ICOSA 4D Flow MRI for prediction of hemodynamic blood damage. Sci. Rep. 6:39773, 2016.

    Article  Google Scholar 

  18. Haj-Ali, R., et al. Structural simulations of prosthetic tri-leaflet aortic heart valves. J. Biomech. 41(7):1510–1519, 2008.

    Article  Google Scholar 

  19. Hsu, M.-C., et al. Dynamic and fluid–structure interaction simulations of bioprosthetic heart valves using parametric design with T-splines and Fung-type material models. Comput. Mech. 55(6):1211–1225, 2015.

    Article  MATH  Google Scholar 

  20. Ismail, M., et al. In vitro investigation of the hemodynamics of transcatheter heterotopic valves implantation in the cavo-atrial junction. Artif. Organs 39(9):803–814, 2015.

    Article  Google Scholar 

  21. Le, T. B., and F. Sotiropoulos. Fluid–structure interaction of an aortic heart valve prosthesis driven by an animated anatomic left ventricle. J. Comput. Phys. 244:41–62, 2013.

    Article  MathSciNet  MATH  Google Scholar 

  22. Leat, M. E., and J. Fisher. The influence of manufacturing methods on the function and performance of a synthetic leaflet heart valve. Proc. Inst. Mech. Eng. H 209(1):65–69, 1995.

    Article  Google Scholar 

  23. Leo, H. L., et al. Fluid dynamic assessment of three polymeric heart valves using particle image velocimetry. Ann. Biomed. Eng. 34(6):936–952, 2006.

    Article  Google Scholar 

  24. Lim, W. L., et al. Pulsatile flow studies of a porcine bioprosthetic aortic valve in vitro: PIV measurements and shear-induced blood damage. J. Biomech. 34(11):1417–1427, 2001.

    Article  Google Scholar 

  25. Luraghi, G., et al. Evaluation of an aortic valve prosthesis: fluid–structure interaction or structural simulation? J. Biomech. 58(Supplement C):45–51, 2017.

    Article  Google Scholar 

  26. Marquez, S., R. T. Hon, and A. P. Yoganathan. Comparative hydrodynamic evaluation of bioprosthetic heart valves. J. Heart Valve Dis. 10(6):802–811, 2001.

    Google Scholar 

  27. Mazzocchi, T., et al. Parametric design, fabrication and validation of one-way polymeric valves for artificial sphincters. Sens. Actuators, A 233:184–194, 2015.

    Article  Google Scholar 

  28. Morsi, Y. S., et al. Transient fluid-structure coupling for simulation of a trileaflet heart valve using weak coupling. J Artif Organs 10(2):96–103, 2007.

    Article  Google Scholar 

  29. Murray, G. Aortic valve transplants. Angiology 11(2):99–102, 1960.

    Article  Google Scholar 

  30. Nic An Ghaill, N., and E. G. Little. Determination of the mechanical properties of Bionate 80A and Bionate 75D for the stress analysis of cushion form bearings. Proc. Inst. Mech. Eng. H 222(5):683–694, 2008.

    Article  Google Scholar 

  31. Peskin, C. S. Flow patterns around heart valves: a numerical method. J. Comput. Phys. 10(2):252–271, 1972.

    Article  MathSciNet  MATH  Google Scholar 

  32. Piatti, F., et al. Hemodynamic and thrombogenic analysis of a trileaflet polymeric valve using a fluid-structure interaction approach. J. Biomech. 48(13):3641–3649, 2015.

    Article  Google Scholar 

  33. Rae, P. J., E. N. Brown, and E. B. Orler. The mechanical properties of poly(ether-ether-ketone) (PEEK) with emphasis on the large compressive strain response. Polymer 48(2):598–615, 2007.

    Article  Google Scholar 

  34. Razaghi, R., et al. A computational fluid–structure interaction model of the blood flow in the healthy and varicose saphenous vein. Vascular 24(3):254–263, 2016.

    Article  Google Scholar 

  35. Saikrishnan, N., et al. In vitro characterization of bicuspid aortic valve hemodynamics using particle image velocimetry. Ann. Biomed. Eng. 40(8):1760–1775, 2012.

    Article  Google Scholar 

  36. Sotiropoulos, F., and I. Borazjani. A review of state-of-the-art numerical methods for simulating flow through mechanical heart valves. Med. Biol. Eng. Compu. 47(3):245–256, 2009.

    Article  Google Scholar 

  37. van Loon, R., et al. A combined fictitious domain/adaptive meshing method for fluid–structure interaction in heart valves. Int. J. Numer. Meth. Fluids 46(5):533–544, 2004.

    Article  MATH  Google Scholar 

  38. van Loon, R., P. D. Anderson, and F. N. van de Vosse. A fluid–structure interaction method with solid-rigid contact for heart valve dynamics. J. Comput. Phys. 217(2):806–823, 2006.

    Article  MathSciNet  MATH  Google Scholar 

  39. Vasava, P., et al. Finite element modelling of pulsatile blood flow in idealized model of human aortic arch: study of hypotension and hypertension. Comput. Math. Methods Med. 2012:14, 2012.

    Article  MathSciNet  MATH  Google Scholar 

  40. Wu, W., et al. Fluid–structure interaction model of a percutaneous aortic valve: comparison with an in vitro test and feasibility study in a patient-specific case. Ann. Biomed. Eng. 44(2):590–603, 2016.

    Article  Google Scholar 

  41. Yun, B. M., et al. Computational modelling of flow through prosthetic heart valves using the entropic lattice-Boltzmann method. J. Fluid Mech. 743:170–201, 2014.

    Article  Google Scholar 

Download references

Acknowledgments

We declare that we have no financial and personal relationships with other people or organizations that can inappropriately influence our work. We also thank Thomas E. Claiborne for general comments that improved the manuscript.

Conflict of interest

Saleh Hassanzadeh Gharaie, Bobak Mosadegh and Yosry Morsi declare that they have no conflict of interest.

Research Involving Human Participants and/or Animals

This article does not contain any studies with human participants or animals performed by any of the authors

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Saleh Hassanzadeh Gharaie.

Additional information

Associate Editors Hwa Liang Leo and Ajit P. Yoganathan oversaw the review of this article.

Appendix

Appendix

Table 1 Mesh independence study of the fluid domain.
Table 2 Mesh independence study of the solid domain.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gharaie, S.H., Mosadegh, B. & Morsi, Y. In Vitro Validation of a Numerical Simulation of Leaflet Kinematics in a Polymeric Aortic Valve Under Physiological Conditions. Cardiovasc Eng Tech 9, 42–52 (2018). https://doi.org/10.1007/s13239-018-0340-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13239-018-0340-7

Keywords

Navigation