Skip to main content
Log in

Phylogeny and taxonomy of meristematic rock-inhabiting black fungi in the Dothideomycetes based on multi-locus phylogenies

  • Published:
Fungal Diversity Aims and scope Submit manuscript

Abstract

The last decade has revealed an unexpected fungal diversity associated with natural rocks, often collected in environments influenced by harsh climatic conditions. Yet the phylogenetic affiliations and the taxonomy of many of these extreme fungi, mainly within Dothideomycetes, the largest class of Ascomycota, have only partially been described. In the present study we confirm that most rock inhabiting-fungi (RIF) are highly polyphyletic among Dothideomycetidae, mainly within the order Capnodiales, an order otherwise incorporating several families of major plant pathological importance. Novel taxa were identified within the two major and distinct clades of Teratosphaeriaceae, both comprising meristematic black fungi. Thirty one novel species and 13 new genera are proposed, based on ITS and partial nucLSU, RPB2 and BT2 sequences.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

References

  • Altschul SF, Madden TL, Schaffer AA, Zhang J, Zhang Z, Miller W, Lipman DJ (1997) Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucl Acids Res 25:3389–3402

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Bensch K, Braun U, Groenewald JZ, Crous PW (2012) The genus Cladosporium. Stud Mycol 72:1–401. doi:10.3114/sim0003

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Bjedov I, Tenaillon O, Gérard B, Souza V, Denamur E, Radman M, Taddei F, Matic I (2003) Stress-induced mutagenesis in bacteria. Science 300:1404–1409. doi:10.1126/science.1082240

    Article  CAS  PubMed  Google Scholar 

  • Crous PW, Schoch CL, Hyde KD, Wood AR, Gueidan C, de Hoog GS, Groenewald JZ (2009) Phylogenetic lineages in the Capnodiales. Stud Mycol 64:17–47. doi:10.3114/sim.2009.64.02

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Dadachova E, Casadevall A (2008) Ionizing radiation: how fungi cope, adapt, and exploit with the help of melanin. Curr Opin Microbiol 11:525–531. doi:10.1016/j.mib/2008.09.013

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • de Hoog GS, Beguin H, Batenburg-van de Vegte WH (1997) Phaeotheca triangularis, a new meristematic black yeast from a humidifier. Antonie Van Leeuwenhoek 71:289–295. doi:10.1023/A:1000156820793

    Article  PubMed  Google Scholar 

  • De Leo F, Urzì C, de Hoog GS (2003) A new meristematic fungus, Pseudotaeniolina globosa. Antonie Van Leeuwenhoek 83:351–36. doi:10.1023/A:1023331502345

    Article  PubMed  Google Scholar 

  • Diakumaku E, Gorbushina AA, Krumbein WE, Panina L, Soukharjeski S (1995) Black fungi in marble and limestones: an aesthetical, chemical and physical problem for the conservation of monuments. Sci Total Environ 167:295–304. doi:10.1016/0048-9697(95)04590-W

    Article  CAS  Google Scholar 

  • Dornieden T, Gorbushina AA, Krumbein WE (2000) Biodecay of mural paintings and stone monuments as a space/time related ecological situation – an evaluation of a series of studies. Int Biodeterior Biodegrad 46:261–270. doi:10.1016/S0964-8305(00)00107-4

    Article  CAS  Google Scholar 

  • Favero-Longo SE, Gazzano C, Girlanda M, Castelli D, Tretiach M, Baiocchi C, Piervittori R (2011) Physical and chemical deterioration of silicate and carbonate rocks by meristematic microcolonial fungi and endolithic lichens (Chaetothyriomycetidae). Geomicrobiol J 28:732–744. doi:10.1080/01490451.2010.517696

    Article  CAS  Google Scholar 

  • Frank J, Crous PW, Groenewald JZ, Oertel B, Hyde KD, Phengsintham P, Schroers HJ (2010) Microcyclospora and Microcyclosporella: novel genera accomodating epiphytic fungi causing sooty blotch on apple. In Persoonia 24:93–105. doi:10.3767/003158510X510560

  • Friedmann EI (1982) Endolithic microorganisms in the Antarctic cold desert. Science 215:1045–1053. doi:10.1126/science.215.4536.1045

    Article  CAS  PubMed  Google Scholar 

  • Gazzano C, Favero-Longo SE, Iacomussi P, Piervittori R (2012) Biocidal effect of lichen secondary metabolites against rock-dwelling microcolonial fungi, cyanobacteria and green algae. Int Biodeterior Biodegrad 84:300–306. doi:10.1016/j.ibiod.2012.05.033

    Article  Google Scholar 

  • Gorbushina AA (2007) Life on the rocks. Environ Microbiol 9:1613–1631. doi:10.1111/j.1462-2920.2007.01301.x

    Article  CAS  PubMed  Google Scholar 

  • Gorbushina AA, Krumbein WE, Hamman CH, Panina L, Soukharjevski S, Wollenzien U (1993) Role of black fungi in color change and biodeterioration of antique marbles. Geomicrobiol J 11:205–220. doi:10.1080/01490459309377952

    Article  Google Scholar 

  • Gorbushina AA, Krumbein WE, Volkmann M (2002) Rock surfaces as life indicators: new ways to demonstrate life and traces of former life. Astrobiology 2:203–213. doi:10.1089/15311070260192273

    Article  CAS  PubMed  Google Scholar 

  • Gorbushina AA, Whitehead K, Dornieden T, Niesse A, Schulte A, Hedges JI (2003) Black fungal colonies as units of survival: hyphal mycosporines synthesized by rock-dwelling microcolonial fungi. Can J Bot 81:131–138. doi:10.1139/b03-011

    Article  CAS  Google Scholar 

  • Gorbushina AA, Kotlova ER, Sherstneva OA (2008) Cellular responses of microcolonial rock fungi to long-term desiccation and subsequent rehydration. Stud Mycol 61:91–97. doi:10.3114/sim.2008.61.09

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Göttlich E, van der Lubbe W, Lange B, Fiedler S, Melchert I, Reifenrath M, Flemming HC, de Hoog GS (2002) Fungal flora in ground-derived public drinking water. Int J Hyg Environ Health 205:269–279

    Article  PubMed  Google Scholar 

  • Gueidan C, Savić S, Thüs H, Roux C, Keller C, Tibell L, Prieto M, Heiðmarsson S, Breuss O, Orange A, Fröberg L, Amtoft Wynns A, Navarro-Rosinés P, Krzewicka B, Pykälä J, Grube M, Lutzoni F (2009) Generic classification of the Verrucariaceae (Ascomycota) based on molecular and morphological evidence: recent progress and remaining challenges. Taxon 58:184–208

    Google Scholar 

  • Hageskal G, Knutsen AK, Gaustad P, de Hoog GS, Skaar I (2006) Diversity and significance of mold species in Norwegian drinking water. Appl Environ Microbiol 72:7586–7593. doi:10.1128/AEM.01628-06

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Hamada N, Abe N (2009) Physiological characteristics of 13 common fungal species in bathrooms. Mycoscience 50:421–429. doi:10.1007/s10267-009-0500-6

    Article  Google Scholar 

  • Huelsenbeck JP, Ronquist F (2001) MRBAYES: bayesian inference of phylogenetic trees. Bioinformatics 17:754–755. doi:10.1093/bioinformatics/btg180

    Article  CAS  PubMed  Google Scholar 

  • Isola D (2010) Biodiversity, phylogeny and evolution of rock black fungi. Doctoral dissertation, Università degli Studi della Tuscia, Viterbo, Italy. http://dspace.unitus.it/bitstream/2067/1068/1/disola_tesid.pdf

  • Isola D, Marzban G, Selbmann L, Onofri S, Laimer M, Sterflinger K (2011) Sample preparation and 2-DE procedure for protein expression profiling of black microcolonial fungi. Fungal Biol 115:971–977. doi:10.1016/j.funbio.2011.03.001

    Article  CAS  PubMed  Google Scholar 

  • Isola D, Selbmann L, Meloni P, Maracci E, Onofri S, Zucconi L (2013a) Detrimental rock black fungi and biocides: A study on the Monumental Cemetery of Cagliari. In: Rogerio-Candelera MA, Lazzari M, Cano E (eds) Science and Technology for the conservation of cultural heritage. CRC Press, London, pp 83–86

  • Isola D, Selbmann L, de Hoog GS, Fenice M, Onofri S, Prenafeta-Boldú FX, Zucconi L (2013b) Isolation and screening of black fungi as degraders of volatile aromatic hydrocarbons. Mycopathologia 175:369–379. doi:10.1007/s11046-013-9635-2

    Article  PubMed  Google Scholar 

  • Kang JM, Jovine NM, Blaser JM (2006) A paradigm for direct stress-induced mutation in prokaryotes. FASEB J 20:2476–2485. doi:10.1096/fj.06-6209com

    Article  CAS  PubMed  Google Scholar 

  • Katoh K, Toh H (2010) Parallelization of the MAFFT multiple sequence alignment program. Bioinformatics 26:1899–1900. doi:10.1093/bioinformatics/btq224

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Kirk PM, Cannon PF, Minter DW, Stalpers JA (2008) Dictionary of the Fungi, 10th edn. CABI Pubishing, Wallingford

    Google Scholar 

  • Krumbein WE, Jens K (1981) Biogenic rock varnishes of the Negev desert (Israel), an ecological study of iron and manganese transformation by cyanobacteria and fungi. Oecologia 50:25–38. doi:10.1007/BF00378791

    Article  Google Scholar 

  • Krumbein WE, Brehm U, Gerdes G, Gorbushina AA, Levit GS, Palinska KA (2003) Biofilm, biodictyon, biomat, microbialites, oolites, stromatolites, geophysiology, global mechanisms, parahistology. In: Krumbein WE, Paterson DM, Zavarzin GA (eds) Fossil and Recent Biofilms. Kluwer Academic Publishers, Dordrecht, pp 1–27

    Chapter  Google Scholar 

  • Liu YJ, Whelen S, Hall BD (1999) Phylogenetic relationships among ascomycetes: evidence from an RNA polymerase II subunit. Mol Biol Evol 16:1799–1808

    Article  CAS  PubMed  Google Scholar 

  • Maksaev V, Munizaga F, Zentilli M, Charrier R (2009) Fission track thermochronology of Neogene plutons in the Principal Andean Cordillera of central Chile (33–35° S): implications for tectonic evolution and porphyry Cu-Mo mineralization. Andean Geol 36:153–171. doi:10.5027/andgeoV36n2-a01

    CAS  Google Scholar 

  • Muller HJ (1964) The relation of recombination to mutational advantage. Mutat Res 1:2–9. doi:10.1016/0027–5107(64)90047–8

    Article  Google Scholar 

  • Nai C, Wong HY, Pannenbecker A, Broughton WJ, Benoit I, de Vries RP, Gueidan C, Gorbushina AA (2013) Nutritional physiology of a rock-inhabiting, model micro-colonial fungus from an ancestral lineage of the Chaetothyriales (Ascomycetes). Fungal Genet Biol 56:54–66. doi:10.1016/j.fgb.2013.04.001

    Article  CAS  PubMed  Google Scholar 

  • O’Donnell K, Cigelnik E (1997) Two divergent intragenomic rDNA ITS2 types within a monophyletic lineage of the fungus Fusarium are nonorthologous. Mol Phylogenet Evol 7:103–116. doi:10.1006/mpev.1996.0376

    Article  PubMed  Google Scholar 

  • Onofri S, Pagano S, Zucconi L, Tosi S (1999) Friedmanniomyces endolithicus (Fungi, Hyphomycetes), anam-gen and sp nov, from continental Antarctica. Nova Hedwigia 68:175–182

    Google Scholar 

  • Onofri S, Selbmann L, de Hoog GS, Grube M, Barreca D, Ruisi S, Zucconi L (2007) Evolution and adaptation of fungi at the boundaries of life. Adv Space Res 40:1657–1664. doi:10.1016/j.asr.2007.06.004

    Article  Google Scholar 

  • Onofri S, Barreca D, Selbmann L, Isola D, Rabbow E, Horneck G, de Vera JPP, Hatton J, Zucconi L (2008) Resistence of Antarctic black fungi e cryptoendolithic communities to simulated space and Mars conditions. Stud Mycol 61:99–109. doi:10.3114/sim.2008.61.10

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Onofri S, Selbmann L, Barreca D, Isola D, Zucconi L (2009) Do fungi survive under actual space conditions? Searching for evidence in favour of lithopanspermia. Plant Biosyst 143:S85–S87. doi:10.1080/11263500903208393

    Article  Google Scholar 

  • Onofri S, Anastasi A, Del Frate G, Di Piazza S, Garnero N, Guglielminetti M, Isola D, Panno L, Ripa C, Selbmann L, Varese GC, Voyron S, Zotti M, Zucconi L (2011) Biodiversity of rock, beach and water fungi. Plant Biosyst 145:1–10. doi:10.1080/11263504.2011.633117

    Article  Google Scholar 

  • Onofri S, de la Torre R, de Vera JP, Ott S, Zucconi L, Selbmann L, Scalzi G, Venkateswaran KJ, Rabbow E, Sánchez Iñigo FJ, Horneck G (2012) Survival of rock-colonizing organisms after 1.5 years in outer space. Astrobiology 12:508–516. doi:10.1089/ast.2011.0736

    Article  PubMed  Google Scholar 

  • Page RDM (1996) Treeview: an application to display phylogenetic trees on personal computers. Comput Appl Biosci 12:357–358

    CAS  PubMed  Google Scholar 

  • Pinna D, Salvadori O (1999) Biological growth on Italian monuments restored with organic or carbonatic compounds. In: Ciferri O, Mastromei G, Tiano P (eds) Of microbes and art: the role of microbial communities in the degradation and protection of cultural heritage. Plenum, NY, pp 149–154

    Google Scholar 

  • Posada D, Crandall KA (1998) Modeltest: testing the model of DNA substitution. Bioinformatics 1:817–818. doi:10.1093/bioinformatics/14.9.817

    Article  Google Scholar 

  • Quaedvlieg W, Kema GHJ, Groenewald JZ, Verkley GJM, Seifbarghi S, Razavi M, Mirzadi Gohari A, Mehrabi R, Crous PW (2011) Zymoseptoria gen. nov.: a new genus to accommodate septoria-like species occurring on graminicolous hosts. Persoonia 26:57–69. doi:10.3767/003158511X571841

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Rossetti F, Storti F, Salvini F (2000) Cenozoic noncoaxial transtension along the western shoulder of the Ross Sea, Antarctica, and the emplacement of McMurdo dyke arrays. Terra Nova 12:60–66. doi:10.1111/j.1365-3121.2000.00270.x

    Article  CAS  Google Scholar 

  • Ruibal C (2004) Isolation and characterization of melanized, slow-growing fungi from semiarid rock surfaces of central Spain and Mallorca. Doctoral dissertation. Universidad Autónoma de Madrid/Merck, Sharp & Dohme de España, Madrid

    Google Scholar 

  • Ruibal C, Gonzalo P, Bills GF (2005) Isolation and characterization of melanized fungi from limestone formations in Mallorca. Mycol Prog 4:23–38. doi:10.1007/s11557-006-0107-7

    Article  Google Scholar 

  • Ruibal C, Platas G, Bills GF (2008) High diversity and morphological convergence among melanised fungi from rock formations in the Central Mountain System of Spain. Persoonia 21:93–110. doi:10.3767/003158508X371379

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Ruibal C, Gueidan C, Selbmann L, Gorbushina AA, Crous PW, Groenewald JZ, Muggia L, Grube M, Isola D, Schoch CL, Staley JT, Lutzoni F, de Hoog GS (2009) Phylogeny of rock-inhabiting fungi related to Dothideomycetes. Stud Mycol 64:123–133. doi:10.3114/sim.2009.64.06

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Samerpitak K, Van der Linde E, Choi HJ, Gerrits van den Ende AHG, Machouart M, Gueidan C, de Hoog GS (2013) Taxonomy of Ochroconis, a genus including opportunistic pathogens on humans and animals. Fungal Divers 2:1–38. doi:10.1007/s13225-013-0253-6

    Google Scholar 

  • Schoch CL, Shoemaker RA, Seifert KA, Hambleton S, Spatafora JW, Crous PW (2006) A multigene phylogeny of the Dothideomycetes using four nuclear loci. Mycologia 98:1041–1052. doi:10.3852/mycologia.98.6.1041

    Article  CAS  PubMed  Google Scholar 

  • Schoch CL, Crous PW, Groenewald JZ, Boehm EWA, Burgess TI, De Gruyter J, de Hoog GS, Dixon LJ, Grube M, Gueidan C, Harada Y, Hatakeyama S, Hirayama K, Hosoya T, Huhndorf SM, Hyde KD, Jones EBG, Kohmeyer J, Kruys A, Li YM, Lücking R, Lumbush HT, Marvanová L, Mbatchou JS, McVay AH, Miller AN, Mugambi GK, Muggia L, Nelsen MP, Nelson P, Owensby CA, Phillips AJL, Phongpaichit S, Pointing SB, Pujade-Renaud V, Raja HA, Rivas Plata E, Robbertse B, Ruibal C, Sakayaroj J, Sano T, Selbmann L, Shearer CA, Shirouzu T, Slippers B, Suetrong S, Tanaka K, Volkmann-Kohlmeyer B, Wingfield MJ, Wood AR, Woudenberg JHC, Yonezawa H, Zhang Y, Spatafora JW (2009) A class-wide phylogenetic assessment of Dothideomycetes. Stud Mycol 64:1–15. doi:10.3114/sim.2009.64.01

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Seifert KA, Nickerson NL, Corlett M, Jackson ED, Louis-Seize G, Davies RJ (2004) Devriesia, a new hyphomycete genus to accommodate heat-resistant, cladosporium-like fungi. Can J Bot 82:914–926. doi:10.1139/b04-070

    Article  Google Scholar 

  • Selbmann L, de Hoog GS, Mazzaglia A, Friedmann EI, Onofri S (2005) Fungi at the edge of life: cryptoendolithic black fungi from Antarctic Desert. Stud Mycol 51:1–32

    Google Scholar 

  • Selbmann L, de Hoog GS, Gerrits van den Ende AHG, Ruibal C, De Leo F, Zucconi L, Isola D, Ruisi S, Onofri S (2008) Drought meets acid: three new genera in a dothidealean clade of extremotolerant fungi. Stud Mycol 61:1–20. doi:10.3114/sim.2008.61.01

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Selbmann L, Isola D, Zucconi L, Onofri S (2011) Resistance to UV-B induced DNA damage in extreme-tolerant cryptoendolithic Antarctic fungi: detection by PCR assays. Fungal Biol 115:937–944. doi:10.1016/j.funbio.2011.02.016

    Article  CAS  PubMed  Google Scholar 

  • Selbmann L, Isola D, Egidi E, Zucconi L, Gueidan C, de Hoog GS, Onofri S (2013a) Mountain tips as reservoirs for new rock fungal entities: saxomyces gen. nov. and new species from the Alps. Fungal Divers. doi:10.1007/s13225-013-0234-9

    Google Scholar 

  • Selbmann L, de Hoog GS, Zucconi L, Isola D, Onofri S (2013b) Black yeasts from cold habitats. In: Seckbach J (ed) Yeasts from cold habitats. Springer, Berlin

    Google Scholar 

  • Selbmann L, Grube M, Onofri S, Isola D, Zucconi L (2013c) Antarctic epilithic lichens as niches for meristematic fungi. Biology 2:784–797. doi:10.3390/bioology2020784

    Article  Google Scholar 

  • Sert HB, Sümbül H, Sterflinger K (2007a) Microcolonial fungi from antique marbles in Perge/Side/Termessos (Antalya/Turkey). Antonie Van Leeuwenhoek 91:217–227. doi:10.1007/s10482-006-9111-9

    Article  CAS  PubMed  Google Scholar 

  • Sert HB, Sümbül H, Sterflinger K (2007b) Sarcinomyces sideticae, a new black yeast from historical marble monuments in Side (Antalya, Turkey). Bot J Linn Soc 154:373–380. doi:10.1111/j.1095-8339.2007.00658.x

    Article  Google Scholar 

  • Sert HB, Sümbül H, Sterflinger K (2007c) A new species of Capnobotryella from monument surfaces. Mycol Res 111:1235–1241. doi:10.1016/j.mycres.2007.06.011

    Article  CAS  PubMed  Google Scholar 

  • Skinner DNB (1980) GANOVEX’79. N Z Antarct Rec 3:15–24

    Google Scholar 

  • Staley JT, Palmer F, Adams B (1982) Microcolonial fungi: common inhabitants on desert rocks? Science 215:1093–1095. doi:10.1126/science.215.4536.1093

    Article  CAS  PubMed  Google Scholar 

  • Stamatakis A, Hoover P, Rougemont J (2008) A rapid bootstrap algorithm for the RAxML Web servers. Syst Biol 57:758–771. doi:10.1080/10635150802429642

    Article  PubMed  Google Scholar 

  • Sterflinger K (1998) Temperature and NaCl-tolerance of rock-inhabiting meristematic fungi. Antonie Van Leeuwenhoek 74:271–281. doi:10.1023/A:1001753131034

    Article  CAS  PubMed  Google Scholar 

  • Sterflinger K (2006) Black yeast and meristematic fungi: ecology, diversity and identification. In: Péter G, Rosa C (eds) The yeast handbook. Biodiversity and ecophysiology of yeasts. Springer, Berlin, pp 501–514. doi:10.1007/3-540-30985-3_20

    Chapter  Google Scholar 

  • Sterflinger K, de Baere R, de Hoog GS, de Wachter R, Krumbein WE, Haase G (1997) Coniosporium perforans and C. apollinis, two new rock-inhabiting fungi isolated from marble in the Sanctuary of Delos (Cyclades, Greece). Antonie Van Leeuwenhoek 72:349–363. doi:10.1023/A:1000570429688

    Article  CAS  PubMed  Google Scholar 

  • Sterflinger K, de Hoog GS, Haase G (1999) Phylogeny and ecology of meristematic ascomycetes. Stud Mycol 43:5–22

    Google Scholar 

  • Stukenbrock EH, Quaedvlieg W, Javan-Nikhah M, Zala M, Crous PW, McDonald BA (2012) Zymoseptoria ardabilia and Z. pseudotritici, two progenitor species of the Septoria tritici leaf blotch fungus Z. tritici (synonym: Mycosphaerella graminicola). Mycologia 104:1397–1407. doi:10.3852/11-374

    Article  PubMed  Google Scholar 

  • Tesei D, Marzban G, Zakharova K, Isola D, Selbmann L, Sterflinger K (2012) Alteration of protein patterns in black rock inhabiting fungi as a response to different temperatures. Fungal Biol 116:932–940. doi:10.1016/j.funbio.2012.06.004

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Urzì C, Realini M (1998) Colour changes of Noto’s calcareous sandstone as related with its colonization by microorganisms. Int Biodeterior Biodegrad 42:45–54. doi:10.1016/S0964-8305(98)00045-6

    Article  Google Scholar 

  • Urzì C, Wollenzien U, Zagari M, Krumbein WE (1994) Biodiversity of the marble inhabiting microflora. Colonisation, biodeterioration and control. In: Proceedings of the 4th Workshop, Eurocare - Euromarble, Aries, 1994. Bayerisches Landesamt fiir Denkmalpflege Zentrallabor, Forschungsber 13:1–16

    Google Scholar 

  • Vaughan DG, Bamber JL, Giovinetto M, Russel J, Cooper APR (1999) Reassessment of net surface mass balance in Antarctica. J Clim 12:933–946

    Article  Google Scholar 

  • Vilgalys R, Hester M (1990) Rapid genetic identification and mapping of enzymatically amplified ribosomal DNA from several Cryptococcus species. J Bacteriol 172:4238–4246

    CAS  PubMed Central  PubMed  Google Scholar 

  • White TJ, Bruns T, Lee S, Taylor J (1990) Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. In: Innis MA, Gelfe DH, Sninsky JJ, White TJ (eds) PCR protocols, a guide to methods and applications. Academic Press, San Diego, pp 315–322

    Google Scholar 

  • Wollenzien U, de Hoog GS, Krumbein WE, Urzì C (1995) On the isolation of microcolonial fungi occurring on and in marble and other calcareous rocks. Sci Total Environ 167:287–294. doi:10.1016/0048-9697(95)04589-S

    Article  CAS  Google Scholar 

  • Zakharova K, Tesei D, Marzban G, Dijksterhuis J, Wyatt T, Sterflinger K (2012) Microcolonial fungi on rocks: a life in constant drought? Mycopathologia 175:537–547. doi:10.1007/s11046-012-9592-1

    Article  PubMed Central  PubMed  Google Scholar 

  • Zalar P, de Hoog GS, Gunde-Cimerman N (1999) Ecology of halotolerant dothideaceous black yeasts. Stud Mycol 43:38–48

    Google Scholar 

  • Zucconi L, Gagliardi M, Isola D, Onofri S, Andaloro MC, Pelosi C, Pogliani P, Selbmann L (2012) Biodeterioration agents dwelling in or on the wall paintings of the Holy Saviour’s cave (Vallerano, Italy). Int Biodeterior Biodegrad 70:40–46. doi:10.1016/j.ibiod.2011.11.018

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors would like to thank PNRA (Italian National Program for Antarctic Research) for supporting sample collecting in the Antarctic, and the Italian National Antarctic Museum “Felice Ippolito” for supporting CCFEE (Culture Collection of Fungi From Extreme Environments). MIUR-PRIN 2008 is gratefully acknowledged for financial support concerning RIF studies in Italian Alps and Apennines. Laboratory work at the CBS was financed by the Royal Dutch Academy of Arts and Science (KNAW) and the Fonds voor Economische Stuctuurversterking (FES) with the grant ‘Barcoding the CBS collections’. Special thanks are due to Lorenzo Serafini, Karin Pizzinini, Marcello Cominetti, Marco Heltai and Andrea Serafini for collecting rock samples. Mattia Tomassini Barbarossa is acknowledged for giving us permission to sample from Boyl Palace in Cagliari; Monika Laichmanová for providing strains isolated from the Antarctic Peninsula; Costantino Ruibal for providing strains from Spain.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. Selbmann.

Additional information

Taxonomic novelties: Arthrocatena Egidi & Selbmann gen. nov .; Arthrocatena tenebrio Egidi & Selbmann sp. nov.; Catenulomyces Egidi & de Hoog gen. nov.; Catenulomyces convolutus Egidi & de Hoog sp. nov.; Constantinomyces Egidi & Onofri gen. nov.; Constantinomyces macerans de Hoog & Onofri sp. nov.; Constantinomyces minimus de Hoog & Isola sp. nov.; Constantinomyces nebulosus Isola & Zucconi sp. nov.; Constantinomyces virgultus Egidi & Onofri sp. nov.; Devriesia adstricta Egidi & Onofri sp. nov.; Devriesia antarctica Selbmann & de Hoog sp. nov.; Devriesia bulbillosa Egidi & Zucconi sp. nov.; Devriesia compacta de Hoog & Quaedvlieg sp. nov.; Devriesia modesta Isola & Zucconi sp. nov.; Devriesia simplex Selbmann & Zucconi sp. nov.; Hyphoconis Egidi & Quaedvlieg gen. nov.; Hyphoconis sterilis Egidi & Quaedvlieg sp. nov.; Incertomyces Egidi & Zucconi gen. nov.; Incertomyces perditus Egidi & Zucconi sp. nov.; Incertomyces vagans Egidi & Selbmann sp. nov.; Lapidomyces de Hoog & Stielow gen. nov.; Lapidomyces hispanicus de Hoog & Stielow sp. nov.; Meristemomyces Isola & Onofri gen. nov.; Meristemomyces frigidus Isola & Onofri sp. nov.; Monticola Selbmann & Egidi gen. nov.; Monticola elongata Selbmann & Egidi sp. nov.; Oleoguttula Selbmann & de Hoog gen. nov.; Oleoguttula mirabilis Selbmann & de Hoog sp. nov.; Perusta Egidi & Stielow gen. nov.; Perusta inaequalis Egidi & Stielow sp. nov.; Petrophila de Hoog & Quaedvlieg gen. nov.; Petrophila incerta de Hoog & Quaedvlieg sp. nov.; Rachicladosporium alpinum Egidi & Zucconi sp. nov.; Rachicladosporium antarcticum Onofri & Egidi sp. nov.; Rachicladosporium inconspicuum de Hoog & Stielow sp. nov.; Rachicladosporium mcmurdoi Selbmann & Onofri sp. nov.; Rachicladosporium monterosium Isola & Zucconi sp. nov.; Rachicladosporium paucitum Isola & Egidi sp. nov.; Ramimonilia Stielow & Quaedvlieg, gen. nov.; Ramimonilia apicalis Stielow & Quaedvlieg sp. nov.; Vermiconia Egidi & Onofri gen. nov.; Vermiconia antarctica Egidi & Selbmann sp. nov.; Vermiconia flagrans Isola & Selbmann sp. nov.; Vermiconia foris Egidi & Onofri sp. nov.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(PPTX 112 kb)

ESM 2

(PPTX 94 kb)

ESM 3

(PPTX 68 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Egidi, E., de Hoog, G.S., Isola, D. et al. Phylogeny and taxonomy of meristematic rock-inhabiting black fungi in the Dothideomycetes based on multi-locus phylogenies. Fungal Diversity 65, 127–165 (2014). https://doi.org/10.1007/s13225-013-0277-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13225-013-0277-y

Keywords

Navigation