Skip to main content
Log in

Enhanced deposition of ZnO films by Li doping using radio frequency reactive magnetron sputtering

  • Published:
International Journal of Minerals, Metallurgy, and Materials Aims and scope Submit manuscript

Abstract

Radio frequency (RF) reactive magnetron sputtering was utilized to deposit Li-doped and undoped zinc oxide (ZnO) films on silicon wafers. Various Ar/O2 gas ratios by volume and sputtering powers were selected for each deposition process. The results demonstrate that the enhanced ZnO films are obtained via Li doping. The average deposition rate for doped ZnO films is twice more than that of the undoped films. Both atomic force microscopy and scanning electron microscopy studies indicate that Li doping significantly contributes to the higher degree of crystallinity of wurtzite–ZnO. X-ray diffraction analysis demonstrates that Li doping promotes the (002) preferential orientation in Li-doped ZnO films. However, an increase in the ZnO lattice constant, broadening of the (002) peak and a decrease in the peak integral area are observed in some Li-doped samples, especially as the form of Li2O. This implies that doping with Li expands the crystal structure and thus induces the additional strain in the crystal lattice. The oriented-growth Li-doped ZnO will make significant applications in future surface acoustic wave devices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. J.B. Lee, H.J. Lee, S.H. Seo, and J.S. Park, Characterization of undoped and Cu-doped ZnO films for surface acoustic wave applications, Thin Solid Films, 398-399(2001), p. 641.

    Article  Google Scholar 

  2. H.S. Al-Salman and M.J. Abdullah, Preparation of ZnO nanostructures by RF-magnetron sputtering on thermally oxidized porous silicon substrate for VOC sensing application, Measurement, 59(2015), p. 248.

    Article  Google Scholar 

  3. B. Ebin, E. Arig, B. Özkal, and S. Gürmen, production and characterization of ZnO nanoparticles and porous particles by ultrasonic spray pyrolysis using a zinc nitrate precursor, Int. J. Miner. Metall. Mater., 19(2012), No. 7, p. 651.

    Article  Google Scholar 

  4. Z.J. Gao, Y.S. Gu, X.Q. Wang, and Y. Zhang, Mechanical properties of Mn-doped ZnO nanowires studied by first-principles calculations, Int. J. Miner. Metall. Mater., 19(2012), No. 1, p. 89.

    Article  Google Scholar 

  5. M. Joseph, H. Tabata, and T. Kawai, Ferroelectric behavior of Li-doped ZnO thin films on Si (100) by pulsed laser deposition, Appl. Phys. Lett., 74(1999), No. 17, p. 2534.

    Article  Google Scholar 

  6. P. Mondal and D. Das, Transparent and conducting intrinsic ZnO thin films prepared at high growth-rate with c-axis orientation and pyramidal surface texture, Appl. Surf. Sci., 286(2013), p. 397.

    Article  Google Scholar 

  7. G. Chen, C. Song, and F. Pan, Magnetoresistive sensors with hybrid Co/insulator/ZnO:Co junctions, Int. J. Miner. Metall. Mater., 20(2013), No. 2, p. 160.

    Article  Google Scholar 

  8. Y.C. Yang, C. Song, X.H. Wang, F. Zeng, and F. Pan, Giant piezoelectric d33 coefficient in ferroelectric vanadium doped ZnO films, Appl. Phys. Lett., 92(2008), No. n1, article No. 01297.

  9. S.B. Dhananjay and S.B. Krupanidhi, Dielectric properties of c-axis oriented Zn1-x Mg x O thin films grown by multimagnetron sputtering, Appl. Phys. Lett., 89(2006), No. 8, article No. 082905.

  10. C.H. Park, S.B. Zhang, and S.H. Wei, Origin of p-type doping difficulty in ZnO: The impurity perspective, Phys. Rev. B, 66(2002), article No. 073202.

  11. K.C. Chiu, Y.W. Kao, and J.H, Jean, Fabrication of p-type Li-doped ZnO films by RF magnetron sputtering, J. Am. Ceram. Soc., 93(2010), No. 7, p. 1860.

    Google Scholar 

  12. S.Y. Tsai, M.H. Hon, and Y.M. Lu, Annealing effect on conductivity behavior of Li-doped ZnO thin film and its application as ZnO-based homojunction device, J. Cryst. Growth, 326(2011), No. 1, p. 85.

    Article  Google Scholar 

  13. M.G. Wardle, J.P. Goss, and P.R. Briddon, Theory of Li in ZnO: A limitation for Li-based p-type doping, Phys. Rev. B, 71(2005), p. 155205.

  14. Y.J. Zeng, Z.Z. Ye, J.G. Lu, W.Z. Xu, L.P. Zhu, B.H. Zhao, and S. Limpijumnong, Identification of acceptor states in Li-doped p-type ZnO thin films, Appl. Phys. Lett., 89(2006), article No. 042106.

  15. Y.J. Zeng, Z.Z. Ye, W.Z. Xu, L.L. Chen, D.Y. Li, L.P. Zhu, B.H. Zhao, and Y.L. Hu, Realization of p-type ZnO films via monodoping of Li acceptor, J. Cryst. Growth, 283(2005), No. 1-2, p. 180.

    Article  Google Scholar 

  16. B.Y. Su, S.Y. Chu, and Y.D. Juang, Improved electrical and thermal stability of solution-processed Li-doped ZnO thin-film transistors, IEEE Trans. Electron Devices, 59(2012), No. 3, p. 700.

    Article  Google Scholar 

  17. Z. Zhang, K.E. Knutsen, T. Merz, A.Y. Kuznetsov, B.G. Svensson, and L.J. Brillson, Thermal process dependence of Li configuration and electrical properties of Li-doped ZnO, Appl. Phys. Lett., 100(2012), article No. 042107.

  18. X. Li, Y. Yan, T.A. Gessert, C.L. Perkins, D. Young, C. Dehart, M. Young, and T.J. Conutts, Chemical vapor deposition- formed p-type ZnO thin films, J. Vac. Sci. Technol. A, 21(2003), No. 4, p. 1342.

    Article  Google Scholar 

  19. S.H. Jeong, D.G. Yoo, D.Y. Kim, N.E. Lee, and J.H. Boo, Physical properties and etching characteristics of metal (Al, Ag, Li) doped ZnO films grown by RF magnetron sputtering, Thin Solid Films, 516(2008), No. 19, p. 6598.

    Article  Google Scholar 

  20. S.Y. Park, K. Kim, K.H. Lim, B.J. Kim, E. Lee, J.H. Cho, and Y.S. Kim, The structural, optical and electrical characterization of high-performance, low-temperature and solution- processed alkali metal-doped ZnO TFTs, J. Mater. Chem. C, 1(2013), p. 1383.

    Article  Google Scholar 

  21. R. Vettumperumal, S. Kalyanaraman, B. Santoshkumar, and R. Thangavel, Magnetic properties of high Li doped ZnO sol–gel thin films, Mater. Res. Bull., 50(2014), p. 7.

    Article  Google Scholar 

  22. P.K. Nayak, J. Jang, C. Lee, and Y. Hong, Effects of Li doping on the performance and environmental stability of solution processed ZnO thin film transistors, Appl. Phys. Lett., 95(2009), p. 193503.

    Article  Google Scholar 

  23. S.Y. Park, B.J. Kim, K. Kim, M.S. Kang, K.H. Lim, T. Lee, J.M. Myoung, H.K. Baik, J.H. Cho, and Y.S. Kim, Low-temperature, solution-processed and alkali metal doped ZnO for high-performance thin-film transistors, Adv. Mater., 24(2012), No. 6, p. 834.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cheng-ming Li.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, Lx., Liu, S., Li, Cm. et al. Enhanced deposition of ZnO films by Li doping using radio frequency reactive magnetron sputtering. Int J Miner Metall Mater 22, 1108–1114 (2015). https://doi.org/10.1007/s12613-015-1174-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12613-015-1174-z

Keywords

Navigation