Skip to main content
Log in

Numerical modelling of seismic site effects incorporating non-linearity and groundwater level changes

Journal of Earth Science Aims and scope Submit manuscript

Abstract

In the past decades, the necessity for detailed earthquake microzonation studies was recognized worldwide. Therefore, different approaches were established and applied. Unfortunately, the majority of these approaches are not based on pre-existing field data but require extensive seismic measurements and investigations. Furthermore, these approaches incorporate non-linearity inadequately and cannot take groundwater level changes into account. For this purpose, notably numerical models are most suitable. These models require a good knowledge of the local geological conditions (especially of the uppermost unconsolidated units), information about the geotechnical parameters of these units, and a hydrogeological model of the investigated area. Most of this information can be obtained from geotechnical investigations and surveys that have already been carried out in most densely populated areas. In a case study for Bucharest City, non-linear analyses were performed using software that is based on the visco-hypoplastic constitutive law. The results indicate that groundwater level changes have an important influence on duration and amplitude of ground response and thus should be considered for seismic microzonation studies. This approach can be used to display site effects and to identify different microzones taking different earthquake magnitudes and groundwater levels into account.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References Cited

  • Ansal, A. M., Iyisan, R., Güllü, H., 2001. Microtremor Measurements for the Microzonation of Dinar. Pure and Applied Geophysics, 158(12): 2525–2541

    Article  Google Scholar 

  • Cid, J., Susagna, T., Goula, X., et al., 2001. Seismic Zonation of Barcelona Based on Numerical Simulation of Site Effects. Pure and Applied Geophysics, 158(12): 2559–2577

    Article  Google Scholar 

  • Cioflan, C. O., Apostol, B. F., Moldoveanu, C. L., et al., 2004. Deterministic Approach for the Seismic Microzonation of Bucharest. Pure and Applied Geophysics, 161(5–6): 1149–1164

    Article  Google Scholar 

  • Ciugudean, V., Martinof, G. H., 2000. Geological, Geomorphological, and Hydrogeological Conditions in the City Area of Bucharest. S.C. Metroul S.A., Bucharest (in Romanian)

    Google Scholar 

  • Ehret, D., Kienzle, A., Hannich, D., et al., 2005. Seismic Microzonation of Bucharest Based on Non-linear Modelling. International Conference 250th Anniversary of the 1755 Lisbon Earthquake, Lisbon, Portugal. 369–371

    Google Scholar 

  • Fielitz, W., Seghedi, I., 2005. Late Miocene-Quaternary Volcanism, Tectonics and Drainage System Evolution in the East Carpathians, Romania. Tectonophysics, 410(1–4): 111–136

    Article  Google Scholar 

  • Ghenea, C., 1997. The Pliocene-Pleistocene Boundary in Romania. In: van Couvering, J. A., ed., The Pleistocene Boundary and the Beginning of the Quaternary. Cambridge University Press, London. 216–221

    Google Scholar 

  • Giardini, D., Jiménez, M. J., Grünthal, G., 2003. European-Mediterranean Seismic Hazard Map, Scale 1: 5 000 000. European Seismological Commission Hannich, D., Hötzl, H., Cudmani, R., 2006a. The Influence of Groundwater on Damage Caused by Earthquakes—An Overview. Grundwasser, 11(4): 286–294 (in German with English Abstract)

    Google Scholar 

  • Hannich, D., Hötzl, H., Ehret, D., et al., 2005. The Impact of Hydrogeology on Earthquake Ground Motion in Soft Soils. International Conference 250th Anniversary of the 1755 Lisbon Earthquake, Lisbon, Portugal. 358–361

  • Hannich, D., Huber, G., Ehret, D., et al., 2006b. SCPTU-Techniques Used for Shallow Geologic/Hydrogeologic Site Characterization in Bucharest, Romania. ESG 2006-Third International Symposium on the Effects of Surface Geology on Seismic Motion, Grenoble, France. 1: 981–992

    Google Scholar 

  • Herle, I., 1997. Hypoplasticity and Granulometry of Simple Grain Assemblies. In: Gudehus, G., Natau, O., eds., Veröffentlichungen des Institutes für Bodenmechanik und Felsmechanik der Universität Fridericiana in Karlsruhe. Institut für Bodenmechanik und Felsmechanik der Universität Karlsruhe, Karlsruhe. 14: 135 (in German)

    Google Scholar 

  • Herle, I., Gudehus, G., 1999. Determination of Parameters of a Hypoplastic Constitutive Model from Properties of Grain Assemblies. Mechanics of Cohesive-Frictional Materials, 4(5): 461–486

    Article  Google Scholar 

  • Kienzle, A., Hannich, D., Wirth, W., et al., 2006. A GIS-Based Study of Earthquake Hazard as a Tool for the Microzonation of Bucharest. Engineering Geology, 87(1–2): 13–32

    Article  Google Scholar 

  • Liteanu, E., 1952. Geology of Bucharest City Area. Com. Geol. St. Tehn. Econ, Series E.I., Bucharest (in Romanian)

    Google Scholar 

  • Lizcano, A., Rinaldi, V., Fuentes, W. M., 2007. Visco-hypoplastic Model for Pampean Loess. Mecánica Computacional, XXVI: 2646–2655

    Google Scholar 

  • Lungu, D., Aldea, A., Moldoveanu, T., et al., 1999a. Near-Surface Geology and Dynamic Properties of Soil Layers in Bucharest. In: Wenzel, F., Lungu, D., Novak, O., eds., Vrancea Earthquakes: Tectonics, Hazard and Risk Mitigation. Kluwer Academic Publishers, Dordrecht, Netherlands. 137–148

    Google Scholar 

  • Lungu, D., Cornea, T., Nedelcu, C., 1999b. Hazard Assessment and Site-Dependent Response for Vrancea Earthquakes. In: Wenzel, F., Lungu, D., Novak, O., eds., Vrancea Earthquakes: Tectonics, Hazard and Risk Mitigation. Kluwer Academic Publishers, Dordrecht, Netherlands. 251–267

    Google Scholar 

  • Mândrescu, N., Radulian, M., 1999. Seismic Microzoning of Bucharest (Romania): A Critical Review. In: Wenzel, F., Lungu, D., Novak, O., eds., Vrancea Earthquakes: Tectonics, Hazard and Risk Mitigation. Kluwer Academic Publishers, Dordrecht, Netherlands. 109–121

  • Mândrescu, N., Radulian, M., Mârmureanu, G., 2004. Site Conditions and Predominant Period of Seismic Motion in the Bucharest Urban Area. Rev. Roum. Géophysique, 48: 37–48

    Google Scholar 

  • Martin, M., Wenzel, F., 2006. High-Resolution Teleseismic Body Wave Tomography beneath SE-Romania. II. Imaging of a Slab Detachment Scenario. Geophysical Journal International, 164(3): 579–595

    Article  Google Scholar 

  • Mason, P. R. D., Seghedi, I., Szákacs, A., et al., 1998. Magmatic Constraints on Geodynamic Models of Subduction in the East Carpathians, Romania. Tectonophysics, 297(1–4): 157–176

    Article  Google Scholar 

  • Nakamura, Y., 1990. Microtremor Measurements in the San Francisco Bay Region. Soil Mechanics and Foundation Engineering, 38(11): 13–18

    Google Scholar 

  • Niemunis, A., 2003. Extended Hypoplastic Models for Soils. Schriftenreihe des Institutes für Grundbau und Bodenmechanik der Ruhr-Universität Bochum, 34: 233

    Google Scholar 

  • Oncescu, M. C., Marza, V. I., Rizescu, M., et al., 1999. The Romanian Earthquake Catalogue between 1984–1996. In: Wenzel, F., Lungu, D., Novak, O., eds., Vrancea Earthquakes: Tectonics, Hazard and Risk Mitigation. Kluwer Academic Publishers, Dordrecht. 43–47

    Google Scholar 

  • Osinov, V. A., 2003a. A Numerical Model for the Site Response Analysis and Liquefaction of Soil during Earthquakes. In: Natau, O., Fecker, E., Pimentel, E., eds., Geotechnical Measurements and Modelling. Swets & Zeitlinger, Lisse. 475–481

    Google Scholar 

  • Osinov, V. A., 2003b. Cyclic Shearing and Liquefaction of Soil under Irregular Loading: An Incremental Model for the Dynamic Earthquake-Induced Deformation. Soil Dynamics and Earthquake Engineering, 23(7): 535–548

    Article  Google Scholar 

  • Pillai, A. R., 1941. The Rumanian Earthquake of November 10, 1940. Current Science, X(1): 15–16

    Google Scholar 

  • Raileanu, V., Diaconescu, C., Radulescu, F., 1994. Characteristics of Romanian Lithosphere from Deep Seismic Reflection Profiling. Tectonophysics, 239(1–4): 165–185

    Article  Google Scholar 

  • Reyes, D. K., Grandas, C., Lizcano, A., 2007. Numerical Modeling of Wave Propagation in Bogotá Soft Soils. In: Ling, H. I., Callisto, L., Leshchinsky, D., et al., eds., Soil Stress-Strain Behavior: Measurement, Modeling and Analysis. Springer-Verlag, Berlin. 779–789

    Chapter  Google Scholar 

  • Schäfer, R., 2004. Influence of the Construction Process on Strain Behaviour of Diaphragm Walls in Soft Clayey Soil. Instituts für Grundbau und Bodenmechanik der Ruhr-Universität Bochum, Bochum. 36: 201 (in German with English Abstract)

    Google Scholar 

  • Sokolov, V., Bonjer, K. P., Oncescu, M., et al., 2005. Hard Rock Spectral Models for Intermediate-Depth Vrancea, Romania, Earthquakes. Bulletin of the Seismological Society of America, 95(5): 1749–1765

    Article  Google Scholar 

  • Sokolov, V., Bonjer, K. P., Rizescu, M., 2004a. Assessment of Site Effect in Romania during Intermediate Depth Vrancea Earthquakes Using Different Techniques. In: Cheng, Y. T., Panza, G. F., Wu, Z. L., eds., IUGG Special Volume: Earthquake Hazard, Risk, and Strong Ground Motion. Seismological Press, Beijing. 295–320

    Google Scholar 

  • Sokolov, V., Bonjer, K. P., Wenzel, F., 2004b. Accounting for Site Effect in Probabilistic Assessment of Seismic Hazard for Romania and Bucharest: A Case of Deep Seismicity in Vrancea Zone. Soil Dynamics and Earthquake Engineering, 24(12): 929–947

    Article  Google Scholar 

  • Sperner, B., Lorenz, F., Bonjer, K., et al., 2001. Slab Break-off-Abrupt Cut or Gradual Detachment? New Insights from the Vrancea Region (SE Carpathians, Romania). Terra Nova, 13(3): 172–179

    Article  Google Scholar 

  • Sperner, B., CRC 461 Team, 2005. Monitoring of Slab Detachment in the Carpathians. In: Wenzel, F., ed., Perspectives in Modern Seismology. Lecture Note in Earth Science, 105: 187–202

  • van den Ham, G., Rohn, J., Meier, T., et al., 2006. A Method for Modeling of a Creeping Slope with a Visco-hypoplastic Material Law. Mathematical Geology, 38(6): 711–719

    Article  Google Scholar 

  • van den Ham, G., Rohn, J., Meier, T., et al., 2009. Finite Element Simulation of a Slow Moving Natural Slope in the Upper-Austrian Alps Using a Visco-hypoplastic Constitutive Model. Geomorphology, 103(1): 136–142

    Article  Google Scholar 

  • von Wolffersdorff, P. A., 1996. A Hypoplastic Relation for Granular Materials with a Predefined Limit State Surface. Mechanics of Cohesive-Frictional Materials, 1(3): 251–271

    Article  Google Scholar 

  • Wenzel, F., Lorenz, F. P., Sperner, B., et al., 1999. Seismotectonics of the Romanian Vrancea Area. In: Wenzel, F., Lungu, D., Novak, O., eds., Vrancea Earthquakes: Tectonics, Hazard and Risk Mitigation. Kluwer Academic Publishers, Dordrecht. 15–25

    Google Scholar 

  • Wortel, M. J. R., Spakman, W., 2000. Subduction and Slab Detachment in the Mediterranean-Carpathian Region. Science, 290(5498): 1910–1917

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dominik Ehret.

Additional information

This study was supported by the German Research Foundation (DFG), the State of Baden-Württemberg, and the University (TH) of Karlsruhe.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ehret, D., Rohn, J., Hannich, D. et al. Numerical modelling of seismic site effects incorporating non-linearity and groundwater level changes. J. Earth Sci. 21, 931–940 (2010). https://doi.org/10.1007/s12583-010-0146-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12583-010-0146-5

Key Words

Navigation