Skip to main content
Log in

Outstanding Mild Wear Performance of Ti–29Nb–14Ta–4.5Zr Alloy Through Subsurface Grain Refinement and Supporting Effect of Transformation Induced Plasticity

  • Published:
Metals and Materials International Aims and scope Submit manuscript

Abstract

The tribological performance of Ti–29Nb–14Ta–4.5Zr alloy against Ti–6Al–4V ELI was investigated for the mild condition, emphasized on the superficial changes and changes underneath the wear track. The results of X-ray photoelectron spectroscopy indicated that TiO2, Nb2O, Ta2O and Zr2O oxides aggregated to form a protective tribo-layer, which effectively prevented further superficial damages. Development of fine-grain layer and the occurrence of phase transformation of β → α’’/ω were characterized as the main wear-induced evolution of the subsurface layer. The wear-induced transformation increases the hardenability of the subsurface layer, effectively support the worn surface and prevent premature cracking. These phenomenal evolutions were led to a simultaneous increase in the strength and ductility and subsequently wear loss reduction in comparison to the Ti64 ELI.

Graphic Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Y. Yang, Y. Zhu, M.M. Khonsari, H. Yang, Wear anisotropy of selective laser melted 316L stainless steel. Wear 428–429, 376–386 (2019)

    Article  Google Scholar 

  2. Y.S. Zhang, Q.M. Wei, H.Z. Niu, Y.S. Li, C. Chen, Z.T. Yu, X.F. Bai, P.X. Zhang, Formation of nanocrystalline structure in tantalum by sliding friction treatment. Int. J. Refract. Metals Hard Mater. 45, 71–75 (2014)

    Article  CAS  Google Scholar 

  3. Y.S. Zhang, H.Z. Niu, L.C. Zhang, X.F. Bai, X.M. Zhang, P.X. Zhang, Grain coarsening behavior in a nanocrystalline copper subjected to sliding friction. Mater. Lett. 123, 261–264 (2014)

    Article  CAS  Google Scholar 

  4. D. Liu, M. Shen, Y. Tang, Y. Hu, L. Zhao, Effect of multipass friction stir processing on surface corrosion resistance and wear resistance of ZK60 alloy. Metals Mater. Int. (2019). https://doi.org/10.1007/s12540-019-00268-5

    Article  Google Scholar 

  5. H.Q. Sun, Y.N. Shi, M.X. Zhang, Wear behaviour of AZ91D magnesium alloy with a nanocrystalline surface layer. Surf. Coat. Technol. 202, 2859–2864 (2008)

    Article  CAS  Google Scholar 

  6. G. Stachowiak, A.W. Batchelor, Engineering Tribology, 4th edn. (Elsevier, 2014). eBook ISBN: 9780123977762, Hardcover ISBN: 9780123970473, Paperback ISBN: 9780128100318. https://www.elsevier.com/books/engineering-tribology/stachowiak/978-0-12-397047-3

  7. B. Bhushan, Modern Tribology Handbook, vol. 2, 1st edn. (CRS Press, 2000). ISBN: 9780849384035. https://www.crcpress.com/Modern-Tribology-Handbook-Two-Volume-Set/Bhushan/p/book/9780849384035

  8. S. Sadeghpour, S.M. Abbasi, M. Morakabati, L.P. Karjalainen, D.A. Porter, Effect of cold rolling and subsequent annealing on grain refinement of a beta titanium alloy showing stress-induced martensitic transformation. Mater. Sci. Eng. A 731, 465–478 (2018)

    Article  CAS  Google Scholar 

  9. W.J. Kim, S.J. Yoo, J.B. Lee, Microstructure and mechanical properties of pure Ti processed by high-ratio differential speed rolling at room temperature. Scr. Mater. 62, 451–454 (2010)

    Article  CAS  Google Scholar 

  10. Y.S. Lee, M. Niinomi, M. Nakai, K. Narita, K. Cho, Predominant factor determining wear properties of β-type and (α + β)-type titanium alloys in metal-to-metal contact for biomedical applications. J. Mech. Behav. Biomed. Mater. 41, 208–220 (2015)

    Article  Google Scholar 

  11. T. Yao, K. Du, H. Wang, Z. Huang, C. Li, L. Li, Y. Hao, R. Yang, H. Ye, In situ scanning and transmission electron microscopy investigation on plastic deformation in a metastable β titanium alloy. Acta Mater. 133, 21–29 (2017)

    Article  CAS  Google Scholar 

  12. H. Zhan, G. Wang, D. Kent, M. Dargusch, The dynamic response of a metastable β Ti–Nb alloy to high strain rates at room and elevated temperatures. Acta Mater. 105, 104–113 (2016)

    Article  CAS  Google Scholar 

  13. W.L. Wang, X.L. Wang, W. Mei, J. Sun, Role of grain size in tensile behavior in twinning-induced plasticity β Ti–20V–2Nb–2Zr alloy. Mater. Charact. 120, 263–267 (2016)

    Article  CAS  Google Scholar 

  14. M. Ahmed, D. Wexler, G. Casillas, D.G. Savvakin, E.V. Pereloma, Strain rate dependence of deformation—induced transformation and twinning in a metastable titanium alloy. Acta Mater. 104, 190–200 (2016)

    Article  CAS  Google Scholar 

  15. W. Chen, S. Cao, W. Kou, J. Zhang, Y. Wang, Y. Zha, Y. Pan, Q. Hub, Q. Sun, J. Sun, Origin of the ductile-to-brittle transition of metastable β-titanium alloys: self-hardening of ω-precipitates. Acta Mater. 170, 187–204 (2019)

    Article  CAS  Google Scholar 

  16. F. Haftlang, A. Zarei-Hanzaki, H. Abedi, The wear induced crystallographic texture transition in Ti–29Nb–14Ta–4.5Zr alloy. Appl. Surf. Sci. 491, 360–373 (2019)

    Article  CAS  Google Scholar 

  17. X. Tang, T. Ahmed, H.J. Rack, Phase transformations in Ti–Nb–Ta and Ti–Nb–Ta–Zr alloys. J. Mater. Sci. 35, 1805–1811 (2000)

    Article  CAS  Google Scholar 

  18. W. Xu, X. Wu, M. Calin, M. Stoica, J. Eckert, K. Xia, Formation of an ultrafine-grained structure during equal-channel angular pressing of a β-titanium alloy with low phase stability. Scr. Mater. 60, 1012–1015 (2009)

    Article  CAS  Google Scholar 

  19. F. Haftlang, A. Zarei Hanzaki, H.R. Abedi, D. Preisler, K. Bartha, The subsurface frictional hardening: a new approach to improve the high-speed wear performance of Ti–29Nb–14Ta–4.5Zr alloy against Ti–6Al–4V extra-low interstitial. Wear 422–423, 137–150 (2019)

    Article  Google Scholar 

  20. M.M. Dewidar, H.C. Yoon, J.K. Lim, Mechanical properties of metals for biomedical applications using powder metallurgy process: a review. Metals Mater. Int. 12, 193 (2006)

    Article  Google Scholar 

  21. R. Buscher, A. Fischer, The pathways of dynamic recrystallization in all-metal hip joints. Wear 259, 887–897 (2005)

    Article  Google Scholar 

  22. NIST X-ray Photoelectron Spectroscopy Database, NIST Standard Reference Database Number 20, National Institute of Standards and Technology, Gaithersburg MD, 20899 (2000). https://doi.org/10.18434/T4T88K

  23. J.M. Calderon Moreno, M. Popa, S. Ivanescu, C. Vasilescu, S.I. Drob, E.I. Neacsu, M.V. Popa, Microstructure, mechanical properties, and corrosion resistance of Ti–20Zr alloy in undoped and NaF doped artificial saliva. Metals Mater. Int. 20, 177–187 (2014)

    Article  CAS  Google Scholar 

  24. C.W. Chan, S. Lee, G. Smith, G. Sarri, C.H. Ng, A. Sharba, H.-C. Man, Enhancement of wear and corrosion resistance of beta titanium alloy by laser gas alloying with nitrogen. Appl. Surf. Sci. 367, 80–90 (2016)

    Article  CAS  Google Scholar 

  25. J.M. Cordeiro, B.E. Nagay, A.L.R. Ribeiro, N.C. Cruz, E.C. Rangel, L.M.G. Fais, L.G. Vaz, V.A.R. Barão, Functionalization of an experimental Ti–Nb–Zr–Ta alloy with a biomimetic coating produced by plasma electrolytic oxidation. J. Alloys Compd. 770, 1038–1048 (2019)

    Article  CAS  Google Scholar 

  26. A. Sotniczuk, H.A. Garbacz, D. Kuczynska-Zemła, P. Kwasniak, M. Thomas, Corrosion behavior of Ti–29Nb–13Ta–4.6Zr and commercially pure Ti under simulated inflammatory conditions e comparative effect of grain refinement and non-toxic β phase stabilizers. Electrochim. Acta 312, 369–379 (2019)

    Article  CAS  Google Scholar 

  27. W.Y. Guo, J. Sun, J.S. Wu, Electrochemical and XPS studies of corrosion behavior of Ti–23Nb–0.7Ta–2Zr–O alloy in Ringer’s solution. Mater. Chem. Phys. 113, 816–820 (2009)

    Article  CAS  Google Scholar 

  28. Y. Xu, Y. Xiao, D. Yi, H. Liu, J. Wen, Corrosion behavior of Ti–Nb–Ta–Zr–Fe alloy for biomedical applications in Ringer’s solution. Trans. Nonferrous Metal. Soc. 25, 2556–2563 (2015)

    Article  CAS  Google Scholar 

  29. S.F. Ren, J.H. Meng, J.B. Wang, J.J. Lu, S.R. Yang, Tribo-corrosion behaviors of Ti3SiC2/Si3N4 tribo-pair in hydrochloric acid and sodium hydroxide solutions. Wear 275, 8–14 (2012)

    Article  Google Scholar 

  30. A. Gutierrez, M.F. Lopez, J.A. Jimenez, C. Morant, F. Paszti, A. Climent, Surface characterization of the oxide layer grown on Ti–Nb–Zr and Ti–Nb–Al alloys. Surf. Interface Anal. 36, 977–980 (2004)

    Article  CAS  Google Scholar 

  31. M.T. Mohamed, Z.A. Khan, M. Geetha, Effect of thermo-mechanical processing on microstructure and electrochemical behavior of Ti–Nb–Zr–V new metastableβ titanium biomedical alloy. Trans. Nonferrous Metals Soc. China 25, 759–769 (2015)

    Article  Google Scholar 

  32. C. Yin, Y. Liang, Y. Jiang, M. Yang, S. Long, Formation of nano-laminated structures in a dry sliding wear-induced layer under different wear mechanisms of 20CrNi2Mo steel. Appl. Surf. Sci. 423, 305–313 (2017)

    Article  CAS  Google Scholar 

  33. N. Kamikawa, X. Huang, N. Tsuji, N. Hansen, Strengthening mechanisms in nanostructured high-purity aluminum deformed to high strain and annealed. Acta Mater. 57, 4198–4208 (2009)

    Article  CAS  Google Scholar 

  34. J. Gao, Y. Huang, D. Guan, A.J. Knowles, L. Ma, D. Dye, W.M. Rainforth, Deformation mechanisms in a metastable beta titanium twinning induced plasticity alloy with high yield strength and high strain hardening rate. Acta Mater. 152, 301–314 (2018)

    Article  CAS  Google Scholar 

  35. J.W. Won, T. Lee, S.G. Hong, Y. Lee, J.H. Lee, C.S. Lee, Role of deformation twins in static recrystallization kinetics of high-purity alpha titanium. Metals Mater. Int. 22, 1041–1048 (2016)

    Article  CAS  Google Scholar 

  36. M.J. Lai, T. Li, D. Raabe, ω Phase acts as a switch between dislocation channeling and joint twinning- and transformation-induced plasticity in a metastable β titanium alloy. Acta Mater. 151, 67–77 (2018)

    Article  CAS  Google Scholar 

  37. T. Lee, M. Nakai, M. Niinomi, C.H. Park, C.S. Lee, Phase transformation and its effect on mechanical characteristics in warm-deformed Ti–29Nb–13Ta–4.6Zr alloy. Metals Mater. Int. 21, 202–207 (2015)

    Article  CAS  Google Scholar 

  38. J.F. Archard, Contact and rubbing of flat surfaces. J. Appl. Phys. 24, 981–988 (1953)

    Article  Google Scholar 

  39. J.H. Jang, B.D. Joo, J.H. Lee, Y.H. Moon, Effect of hardness of the piston ring coating on the wear characteristics of rubbing surfaces. Metals Mater. Int. 15, 903–908 (2009)

    Article  CAS  Google Scholar 

  40. W.F. Smith, Structure and Properties of Engineering Alloys (McGraw-Hill, New York, 1981)

    Google Scholar 

  41. T. Ahmed, H.J. Rack, Phase transformations during cooling in α + β titanium alloys. Mater. Sci. Eng. A 243, 206–211 (1998)

    Article  Google Scholar 

  42. I. Cvijović-Alagić, Z. Cvijović, S. Mitrović, V. Panić, M. Rakin, Wear and corrosion behaviour of Ti–13Nb–13Zr and Ti–6Al–4V alloys in simulated physiological solution. Corros. Sci. 53, 796–808 (2011)

    Article  Google Scholar 

Download references

Acknowledgements

This work was partly supported by the Ministry of Education, Youth and Sport of the Czech Republic, Program NPU1, Project No. LO1207. Deakin University’s Advanced Characterization Facility is acknowledged for use of the electron microscopy instruments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Abbas Zarei-Hanzaki.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Haftlang, F., Zarei-Hanzaki, A., Abedi, H.R. et al. Outstanding Mild Wear Performance of Ti–29Nb–14Ta–4.5Zr Alloy Through Subsurface Grain Refinement and Supporting Effect of Transformation Induced Plasticity. Met. Mater. Int. 26, 467–476 (2020). https://doi.org/10.1007/s12540-019-00344-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12540-019-00344-w

Keywords

Navigation