Skip to main content
Log in

Prediction of fracture forming limit for DP780 steel sheet

  • Published:
Metals and Materials International Aims and scope Submit manuscript

Abstract

This paper is concerned with modeling of fracture strains of DP780 using a newly proposed micro-mechanism-motivated ductile fracture criterion (Lou et al., 2012) and its application to predict limit dome heights (LDH) for nine hemispherical punch-stretch tests. Dog-bone specimens are tested to characterize strain hardening behavior. Five arc-shaped specimens and four square-shaped specimens are drawn until fracture to construct a fracture forming limit diagram (FFLD) using circle grid analysis. Fracture strains are approximated from constructed FFLD in uniaxial, plane strain and balanced biaxial tension. The approximated fracture strains are employed to calculate material constants of the proposed criterion as well as six conventional criteria. FFLDs predicted by these criteria are compared with experimental results. The comparison demonstrates that only the proposed criterion describes FFLD perfectly from uniaxial tension to balanced biaxial tension. All criteria are implemented into ABAQUS/Explicit to predict LDHs of punch-stretch tests. Numerical results indicate that LDHs are severely underestimated for the square-shaped specimens by conventional criteria while the proposed criterion predicts LDHs with good agreement for nine tests with strain paths between uniaxial tension and balanced biaxial tension. Thus, the proposed criterion is recommended to access formability from uniaxial tension to balanced biaxial tension.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. G. Cockcroft and D. J. Latham, J. Inst. Met. 96, 33 (1968).

    CAS  Google Scholar 

  2. J. R. Rice and D. M. Tracey, J. Mech. Phys. Solids 17, 201 (1969).

    Article  Google Scholar 

  3. P. Brozzo, B. DeLuca, and R. Rendina, Proc. 7th Bi. Conf. IDDRG, Amsterdam (1972).

    Google Scholar 

  4. S. I. Oh, C. C. Chen, and S. Kobayashi, Trans. ASME, J. Eng. Ind. 101, 36 (1979).

    Article  Google Scholar 

  5. M. Oyane, T. Sato, K. Okimoto, and S. Shima, J. Mech. Work. Technol. 4, 65 (1980).

    Article  CAS  Google Scholar 

  6. S. E. Clift, P. Hartley, C. E. N. Sturgess, and G. W. Rowe, Int. J. Mech. Sci. 32, 1 (1990).

    Article  Google Scholar 

  7. H. N. Han and K.-H. Kim, J. Mater. Process. Technol. 142, 231 (2003).

    Article  CAS  Google Scholar 

  8. Y. K. Ko, J. S. Lee, H. Huh, H. K. Kim, and S.-H. Park, J. Mater. Process. Technol. 187–188, 358 (2007).

    Article  Google Scholar 

  9. H. Takuda, K. Mori, H. Fujimoto, and N. Hatta, J. Mater. Process. Technol. 60, 291 (1996).

    Article  Google Scholar 

  10. H. Takuda, K. Mori, and N. Hatta, J. Mater. Process. Technol. 95, 116 (1999).

    Article  Google Scholar 

  11. M. Jain, J. Allin, and D. J. Lloyd, Int. J. Mech. Sci. 41, 1273 (1999).

    Article  Google Scholar 

  12. L. P. Lei, B. S. Kang, and S. J. Kang, J. Mater. Process. Technol. 113, 673 (2001).

    Article  Google Scholar 

  13. C. L. Chow and M. Jie, Int. J. Mech. Sci. 46, 99 (2004).

    Article  Google Scholar 

  14. Y. B. Bao and T. Wierzbicki, J. Eng. Mater. Tech. ASME 126, 314 (2004).

    Article  CAS  Google Scholar 

  15. F. Ozturk and D. Y. Lee, J. Mater. Process. Technol. 147, 397 (2004).

    Article  Google Scholar 

  16. S.-T. Oh, H.-J. Chang, K.H. Oh, and H. N. Han, Met. Mater. Int. 12, 121 (2006).

    Article  CAS  Google Scholar 

  17. C. Vallellano, D. Morales, and F. J. Garchi-Lomas, Mater. Manuf. Process. 23, 303 (2008).

    Article  CAS  Google Scholar 

  18. J. S. Chen, X. B. Zhou, and J. Chen, J. Mater. Process. Technol. 210, 315 (2010).

    Article  CAS  Google Scholar 

  19. Y. S. Lou, H. Huh, S. J. Lim, and K. H. Pack, Int. J. Solids Struct. 49, 3605 (2012).

    Article  CAS  Google Scholar 

  20. Y. S. Lou and H. Huh, Int. J. Solids Struct. 50, 447 (2013).

    Article  CAS  Google Scholar 

  21. Y. S. Lou and H. Huh, J. Mater. Process. Technol. (2013) (doi: 10.1016/j.jmatprotec.2013.03.001.)

    Google Scholar 

  22. Y. S. Lou, and H. Huh, Int. J. Solids Struct. 50, 447 (2013).

    Article  CAS  Google Scholar 

  23. S. B. Kim, H. Huh, H. H. Bok, and M. B. Moon, J. Mater. Process. Technol. 211, 851, (2011).

    Article  CAS  Google Scholar 

  24. M. Luo and T. Wierzbicki, Int. J. Solids Struct. 47, 3084 (2010).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hoon Huh.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lou, Y., Lim, S.J. & Huh, H. Prediction of fracture forming limit for DP780 steel sheet. Met. Mater. Int. 19, 697–705 (2013). https://doi.org/10.1007/s12540-013-4009-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12540-013-4009-3

Key words

Navigation