Skip to main content

Advertisement

Log in

Invertebrate diversity of the unexplored marine western margin of Australia: taxonomy and implications for global biodiversity

  • Original Paper
  • Published:
Marine Biodiversity Aims and scope Submit manuscript

Abstract

However derived, predictions of global marine species diversity rely on existing real data. All methods, whether based on past rates of species descriptions, on expert opinion, on the fraction of undescribed species in samples collected, or on ratios between taxa in the taxonomic hierarchy, suffer the same limitation. Here we show that infaunal macrofauna (crustaceans and polychaetes) of the lower bathyal depth range are underrepresented among available data and documented results from Australia.

The crustacean and polychaete fauna (only partially identified) of the bathyal continental margin of Western Australia comprised 805 species, representing a largely novel and endemic fauna. Overall, 94.6% of crustacean species were undescribed, while 72% of polychaete species were new to the Australian fauna, including all tanaidaceans, amphipods, and cumaceans, as well as most isopods. Most species were rare, and the species accumulation rate showed no sign of reaching an asymptote with increasing area sampled. Similar data are likely for the largely unexplored bathyal regions. This leads us to conclude that the numbers upon which extrapolations to larger areas are based are too low to provide confidence. The Southern Australian and Indo-West Pacific deep-sea regions contribute significantly to global species diversity. These regions and bathyal and abyssal habitats generally are extensive, but are so-far poorly sampled. They appear to be dominated by taxonomically poorly worked and species-rich taxa with limited distributions. The combination of high species richness among infaunal taxa—compared to better known taxa with larger individuals, higher endemism than presently acknowledged because of the presence of cryptic species, the low proportion of described species in these taxa, and the vast extent of unexplored bathyal and abyssal environments—will lead to further accumulation of new species as more and more deep sea regions are explored. It remains to be tested whether ratios of 10 or more undescribed to described species, found in this study for the dominant taxa and for the deep Southern Ocean and the Indo-West Pacific, are replicable in other areas. Our data and similar figures from other remote regions, and the lack of faunal overlap, suggest that Appeltans et al.’s (Current Biology 22:1–14, 2012) estimate that between one-third and two-thirds of the world’s marine fauna is undescribed is low, and that Mora et al.’s (PLoS Biol 9(8):e1001127. doi:10.1371/journal.pbio.1001127, 2011) of 91% is more probable. We conclude that estimates of global species, however made, are based on limited data.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Albano PG, Sabelli B, Bouchet P (2011) The challenge of small and rare species in marine biodiversity surveys: microgastropod diversity in a complex tropical coastal environment. Biodivers Conserv 20:3223–3237

    Article  Google Scholar 

  • Appeltans W, Ahyong ST, Anderson G, Angel MV, Artois T, Bailly N, Bamber RN, Barber A, Bartsch I, Berta A, Błażewicz-Paszkowycz M, Bock P, Boxshall GA, Boyko CB, Brandão SN, Bray RA, Bruce NL, Cairns SD, Chan T-Y, Cheng L, Collins AG, Cribb T, Curini-Galletti M, Dahdouh-Guebas F, Davie PJF, Dawson MN, De Clerck O, Decock W, De Grave S, de Voogd NJ, Domning DP, Emig CC, Erséus C, Eschmeyer WN, Fauchald K, Fautin DG, Feist SW, Fransen CHJM, Furuya H, Garcia-Alvarez O, Gerken S, Gibson D, Gittenberger A, Gofas S, Gómez-Daglio L, Gordon DP, Guiry MD, Hernandez F, Hoeksema BW, Hopcroft RR, Jaume D, Kirk PM, Koedam N, Koenemann S, Kolb JB, Kristensen RM, Kroh A, Lambert G, Lazarus DB, Lemaitre R, Longshaw M, Lowry J, Macpherson E, Madin LP, Mah CL, Mapstone G, McLaughlin PA, Mees J, Meland K, Messing CG, Mills CE, Molodtsova TN, Mooi RD, Neuhaus B, Ng PKL, Nielsen C, Norenburg JL, Opresko DM, Osawa M, Paulay G, Perrin W, Pilger JF, Poore GCB, Pugh PJA, Read GB, Reimer JD, Rius M, Rocha RM, Saiz-Salinas JI, Scarabino V, Schierwater B, Schmidt-Rhaesa A, Schnabel KE, Schotte M, Schuchert P, Schwabe E, Segers H, Self-Sullivan C, Shenkar N, Siegel V, Sterrer W, Stöhr S, Swalla BJ, Tasker ML, Thuesen EV, Timm T, Todaro MA, Turon X, Tyler S, Uetz P, van der Land J, Vanhoorne B, van Ofwegen LP, van Soest RWM, Vanaverbeke J, Walker-Smith GK, Walter TC, Warren A, Williams GC, Wilson SP, Costello MJ (2012) The magnitude of global marine species diversity. Current Biology 22:1–14 doi.org/10.1016/j.cub.2012.09.036

  • Bamber RN (2005) The tanaidaceans (Arthropoda: Crustacea: Peracarida: Tanaidacea) of Esperance, Western Australia. In: Wells FE, Walker DI, Kendrick GA (eds) The Marine Flora and Fauna of Esperance, Western Australia. Western Australian Museum, Perth, pp 613–727

  • Bastrop R, Jürss K, Sturmbauer C (1998) Cryptic species in marine polychaete and their independent introduction from North America to Europe. Mol Biol Evol 15:97–103

    Article  CAS  PubMed  Google Scholar 

  • Błażewicz-Paszkowycz M, Bamber RN (2007a) New apseudomorph tanaidaceans (Crustacea: Peracarida: Tanaidacea) from eastern Australia: Apseudidae, Whiteleggiidae, Metapseudidae and Pagurapseudidae. Memoirs of Museum Victoria 64:107–148

    Google Scholar 

  • Błażewicz-Paszkowycz M, Bamber RN (2007b) Parapseudid tanaidaceans (Crustacea: Tanaidacea: Apseudomorpha) from eastern Australia. Zootaxa 1401:1–32

    Google Scholar 

  • Błażewicz-Paszkowycz M, Bamber RN (2009) A new genus of a new Austral family of paratanaoid tanaidacean (Crustacea: Peracarida: Tanaidacea), with two new species. Memoirs of Museum Victoria 66:5–15

    Google Scholar 

  • Błażewicz-Paszkowycz M, Bamber RN (2012) The shallow-water Tanaidacea (Arthropoda: Malacostraca: Peracarida) of the Bass Strait, Victoria, Australia (other than the Tanaidae). Memoirs of Museum Victoria 69:1–235

    Google Scholar 

  • Błażewicz-Paszkowycz M, Bamber RN, Anderson G (2012) Diversity of Tanaidacea (Crustacea: Peracarida) in the world's oceans – how far have we come? PLoS One 7(4):e33068. doi:10.1371/journal.pone.0033068

    Article  PubMed Central  PubMed  Google Scholar 

  • Bleeker J, van der Spoel S (1992) Catalogue of the Polychaeta collected by the Siboga Expedition and type specimens of the Polychaeta in the Zoological Museum of Amsterdam. Bulletin Zoölogisch Museum, Universiteit van Amsterdam 13:121–166

    Google Scholar 

  • Bleidorn C, Kruse I, Albrecht S, Bartolomaeus T (2006) Mitochondrial sequence data expose the putative cosmopolitan polychaete Scoloplos armiger (Annelida, Orbiniidae) as a species complex. BMC Evol Biol 6:47–59. doi:10.1186/1471-2148-6-47

    Article  PubMed Central  PubMed  Google Scholar 

  • Bouchet P (2006) The magnitude of marine biodiversity. In: Duarte CM (ed) The exploration of marine biodiversity Scientific and technological challenges. Fundación BBVA, Bilbao, pp 33–63

  • Bouchet P (2009) From specimens to data, and from seashells to molluscs: the Panglao Marine Biodiversity Project. Vita Malacologica 8:1–8

    Google Scholar 

  • Bouchet P, Lozouet P, Maestrati P, Heros V (2002) Assessing the magnitude of species richness in tropical marine environments: exceptionally high numbers of molluscs at a New Caledonia site. Biol J Linn Soc 75:421–436

    Article  Google Scholar 

  • Bouchet P, Lozouet P, Sysoev A (2009a) An inordinate fondness for turrids. Deep-Sea Res II 56:1724–1731

    Article  Google Scholar 

  • Bouchet P, Ng PK, Largo D, Tan S (2009b) PANGLAO 2004–investigations of the marine species richness in the Philippines. Raffles Bull Zool 20:1–19

    Google Scholar 

  • Brandt A (2004) Abundance, diversity and community patterns of Isopoda (Crustacea) in the Weddell Sea and in the Bransfield Strait, Southern Ocean. Antarct Sci 16:5–10

    Article  Google Scholar 

  • Brandt A, Brix S, Brökeland W, Choudhury M, Kaiser S, Malyutina M (2007a) Deep-sea isopod biodiversity, abundance, and endemism in the Atlantic sector of the Southern Ocean – Results from the ANDEEP I–III expeditions. Deep-Sea Res II 54:1760–1775

  • Brandt A, De Broyer C, De Mesel I, Ellingsen KE, Gooday AJ, Hilbig B, Linse K, Thomson MRA, Tyler PA (2007b) The biodiversity of the deep Southern Ocean benthos. Philos Trans R Soc B Biol Sci 362(1477):39–66. doi:10.1098/rstb.2006.1952

    Article  CAS  Google Scholar 

  • Brandt A, Gooday A, Brandao SN, Brix S, Brokeland W, Cedhagen T, Choudhury M, Cornelius N, Danis B, De Mesel I, Diaz RJ, Gillan DC, Ebbe B, Howe JA, Janussen D, Kaiser S, Linse K, Malyutina M, Pawlowski J, Raupach MJ, Vanreusel A (2007c) First insights into the biodiversity and biogeography of the Southern Ocean deep sea. Nature 447:307–311

    Article  CAS  PubMed  Google Scholar 

  • Broekeland W, Raupach MJ (2008) A species complex within the isopod genus Haploniscus (Crustacea: Malacostraca: Peracarida) from the Southern Ocean deep sea: a morphological and molecular approach. Zool J Linnean Soc 152:655–708

    Article  Google Scholar 

  • Brökeland W, Choudhury M, Brandt A (2007) Composition, abundance and distribution of Peracarida from the Southern Ocean deep sea. Deep-Sea Res II 54:1752–1759. doi:10.1016/j.dsr2.2007.07.014

  • Butler AJ, Rees AJJ, Beesley P, Bax N (2010) Marine biodiversity in the Australian Region. PLoS ONE 5:e11831. doi:10.1371/journal.pone.0011831

  • Cadien DB, Lovell LL (eds) (2013) A taxonomic listing of benthic macro- and megainvertebrates from infaunal and epifaunal monitoring and research programs in the Southern California Bight http://www.scamit.org/publications/SCAMIT-ed8b.pdf. 8th edn. Southern California Association of Marine Invertebrate Taxonomists, Los Angeles

  • Calvo M, Templado J, Oliverio M, Machordom A (2009) Hidden Mediterranean biodiversity: molecular evidence for a cryptic species complex within the reef building vermetid gastropod Dendropoma petraeum (Mollusca: Caenogastropoda). Biol J Linn Soc 96:898–912. doi:10.1111/j.1095-8312.2008.01167.x

    Article  Google Scholar 

  • Carney RS (2005) Zonation of deep biota on continental margins. Oceanogr Mar Biol Annu Rev 43:211–278

    Google Scholar 

  • Chapman AD (2009) Numbers of living species in Australia and the world, 2nd edn. Australian Biological Resources Study, Canberra

  • Clarke KR, Gorley RN (2006) Primer v6: User Manual/Tutorial. PRIMER-E, Plymouth

    Google Scholar 

  • Coleman N, Gason ASH, Poore GCB (1997) High species richness in the shallow marine waters of south-east Australia. Mar Ecol Prog Ser 154:17–26

    Article  Google Scholar 

  • Consalvey M, Clark MR, Rowden AA, Stocks K (2010) Life on seamounts. In: McIntyre AD (ed) Life in the world’s oceans: diversity, distribution, and abundance. Wiley-Blackwell, Oxford, pp 123–138. doi:10.1371/journal.pone.0012110

  • Costello MJ, Danovaro R, Halpin PN, Ojaveer H, Miloslavich P (2010) A census of marine biodiversity knowledge, resources, and future challenges. PLoS ONE 5:e12110. doi:10.1371/journal.pone.0012110

  • Costello MJ, May RM, Stork NE (2013a) Can we name Earth's species before they go extinct? Science 339:413–416

    Article  CAS  PubMed  Google Scholar 

  • Costello MJ, Wilson S, Houlding B (2012) Predicting total global species richness using rates of species description and estimates of taxonomic effort. Syst Biol 61:871–883. doi:10.1093/sysbio/syr080

  • Costello MJ, Wilson S, Houlding B (2013b) More taxonomists describing significantly fewer species per unit effort may indicate that most species have been discovered. Syst Biol 62:616–624

    Article  PubMed  Google Scholar 

  • Costello MJ, Wilson SP (2011) Predicting the number of known and unknown species in European seas using rates of description. Glob Ecol Biogeogr 20:319–330. doi:10.1111/j.1466-8238.2010.00603.x

    Article  Google Scholar 

  • Currie DR, Sorokin SJ, Ward TM (2009) Infaunal macroinvertebrate assemblages of the eastern Great Australian Bight: effectiveness of a marine protected area in representing the region's benthic biodiversity. Mar Freshw Res 60:459–474. doi:10.1071/MF08239

    Article  Google Scholar 

  • Day JH (1967) A monograph on the Polychaeta of Southern Africa. Parts 1 and 2. Trustees of the British Museum (Natural History), London

  • Doti B, Roccatagliata D, López Gappa J (2014) An inverse latitudinal biodiversity pattern in asellote isopods (Crustacea, Peracarida) from the Southwest Atlantic between 35° and 56°S. Mar Biodivers 44:115–125. doi:10.1007/s12526-013-0187-y

    Article  Google Scholar 

  • Ellingsen K, Brandt A, Ebbe B, Linse K (2007) Diversity and species distribution of polychaetes, isopods and bivalves in the Atlantic sector of the deep Southern Ocean. Polar Biol 30:1265–1273

    Article  Google Scholar 

  • Eschmeyer WN, Fricke R, Fong JD, Polack D (2010) Marine fish biodiversity: a history of knowledge and discovery (Pisces). Zootaxa 2525:19–50

    Google Scholar 

  • Etter RJ, Rex MA, Chase MC, Quattro JM (1999) A genetic dimension to deep-sea biodiversity. Deep-Sea Res I 46:1095–1099. doi:10.1016/S0967-0637(98)00100-9

  • Fauchald K (1984) Polychaete distribution patterns, or: can animals with Palaeozoic cousins show large-scale geographic patterns? In: Hutchings PA (ed) Proceedings of the First International Polychaete Conference. Sydney. Linnean Society of New South Wales, Sydney, pp 1–6

    Google Scholar 

  • Fautin DG, Malarky L, Soberón J (2013) Latitudinal diversity of sea anemones (Cnidaria: Actiniaria). Biol Bull 224:89–98

    PubMed  Google Scholar 

  • Fauvel P (1953) The fauna of India, including Pakistan, Ceylon, Burma and Malaya. Annelida Polychaeta. The Indian Press, Allahabad

  • Fontaine B, Perrard A, Bouchet P (2012) 21 years of shelf life between discovery and description of new species. Curr Biol 22:R943–R944

  • Gollner S, Fontaneto D, Arbizu PM (2011) Molecular taxonomy confirms morphological classification of deep-sea hydrothermal vent copepods (Dirivultidae) and suggests broad physiological tolerance of species and frequent dispersal along ridges. Mar Biol 158:221–231

    Article  Google Scholar 

  • Gotelli NJ, Colwell RK (2001) Quantifying biodiversity: procedures and pitfalls in the measurement and comparison of species richness. Ecol Lett 4:379–391

    Article  Google Scholar 

  • Grassle JF, Maciolek NJ (1992) Deep-sea species richness: regional and local diversity estimates from quantitative bottom samples. Am Nat 139:313–341

    Article  Google Scholar 

  • Gray JS, Poore GCB, Ugland KI, Wilson RS, Olsgard F, Johannessen O (1997) Coastal and deep-sea benthic diversities compared. Mar Ecol Prog Ser 159:97–103

    Article  Google Scholar 

  • Griffiths CL (2005) Coastal marine biodiversity in East Africa. Indian Journal of Marine Sciences 33:35–41

    Google Scholar 

  • Halt MN, Kupriyanova EK, Cooper SJB, Rouse GW (2009) Naming species with no morphological indicators: species status of Galeolaria caespitosa (Annelida : Serpulidae) inferred from nuclear and mitochondrial gene sequences and morphology. Invertebr Syst 23:205–222. doi:10.1071/IS09003

    Article  CAS  Google Scholar 

  • Hammond PM (1994) Practical approaches to the estimation of the extent of biodiversity in speciose groups. Philos Trans R Soc B 345:119–136

    Article  Google Scholar 

  • Havermans C, Sonet G, d’Udekem d’Acoz G, Nagy ZT, Martin P, Brix S, Riehl T, Agrawal S, Held C (2013) Genetic and morphological divergences in the cosmopolitan deep-sea amphipod Eurythenes gryllus reveal a diverse abyss and a bipolar species. PLoS One 8(9):e74218. doi:10.1371/journal.pone.0074218

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Hughes DJ, Lamont PA, Levin LA, Packer M, Feeley K, Gage JD (2009) Macrofaunal communities and sediment structure across the Pakistan margin oxygen minimum zone, north-east Arabian Sea. Deep-Sea Res II 56:434–448. doi:10.1016/j.dsr2.2008.05.030

  • Kaiser S, Barnes DKA, Brandt A (2007) Slope and deep-sea abundance across scales: Southern Ocean isopods show how complex the deep sea can be. Deep-Sea Res II 54:1776–1789

  • Kensley B (2001) Biogeography of the marine Isopoda of the Indian Ocean, with a check-list of species and records. In: Kensley B, Brusca RC (eds) Isopod systematics and evolution. Balkema, Rotterdam. Crustacean Issues 13:205–264

  • Kensley B, Schotte M (2002) New species and records of Asellota from the Indian Ocean (Crustacea: Peracarida: Isopoda). J Nat Hist 36:1421–1461

    Article  Google Scholar 

  • Kensley B, Schotte M, Poore GCB (2007) New species and records of valviferan isopods (Crustacea: Isopoda: Valvifera) from the Indian Ocean. Proc Biol Soc Wash 120:429–445 doi:10.2988/0006-324X(2007)120[429:NSAROV]2.0.CO;2

  • Kensley B, Schotte M, Poore GCB (2009) Gnathiid isopods (Crustacea: Isopoda: Gnathiidae), mostly new, from the Indian Ocean. Proc Biol Soc Wash 122:32–51. doi:10.2988/07-16.1

    Article  Google Scholar 

  • Knowlton N (1993) Sibling species in the sea. Annu Rev Ecol Syst 24:189–216

    Article  Google Scholar 

  • Kongsrud JA, Budaeva N, Barnich R, Oug E, Bakken T (2013) Benthic polychaetes from the northern Mid-Atlantic Ridge between the Azores and the Reykjanes Ridge. Mar Biol Res 9:516–546. doi:10.1080/17451000.2012.749997

    Article  Google Scholar 

  • Kornicker LS (1994) Ostracoda (Myodocopina) of the SE Australian continental slope, part 1. Smithsonian Contributions to Zoology 553:1–200

    Article  Google Scholar 

  • Kornicker LS (1995) Ostracoda (Myodocopina) of the SE Australian continental slope, part 2. Smithsonian Contributions to Zoology 562:1–97

    Google Scholar 

  • Kornicker LS, Poore GCB (1996) Ostracoda (Myodocopina) of the SE Australian continental slope, part 3. Smithsonian Contributions to Zoology 573:1–186

    Google Scholar 

  • Lambshead PJD, Boucher G (2003) Marine nematode deep-sea biodiversity – hyperdiverse or hype? J Biogeogr 30:475–485

    Article  Google Scholar 

  • Last PR, White WT, Gledhill DC, Pogonoski JJ, Lyne VD, Bax N (2011) Biogeographical structure and affinities of the marine demersal ichthyofauna of Australia. J Biogeogr 38:1484–1496

    Article  Google Scholar 

  • Levin LA, Gage JD, Martin C, Lamont PA (2000) Macrobenthic community structure within and beneath the oxygen minimum zone, NW Arabian Sea. Deep-Sea Res II 47:189–226. doi:10.1016/S0967-0645(99)00103-4

  • Malyutina M, Brandt A (2007) Diversity and zoogeography of Antarctic deep-sea Munnopsidae (Crustacea, Isopoda, Asellota). Deep-Sea Res II 54:1790–1805

    Article  Google Scholar 

  • Matabos M, Plouviez S, Hourdez S, Desbruyères D, Legendre P, Warén A, Jollivet D, Thiébaut E (2011) Faunal changes and geographic crypticism indicate the occurrence of a biogeographic transition zone along the southern East Pacific Rise. J Biogeogr 38:575–594. doi:10.1111/j.1365-2699.2010.02418.x

    Article  Google Scholar 

  • May RM (1992) Bottoms up for the oceans. Nature 357:278–279

    Article  Google Scholar 

  • McCallum AW (2011) Decapod crustacean diversity along Australia's western continental margin. PhD thesis, University of Melbourne, Melbourne

  • McCallum AW, Poore GCB, Williams A, Althaus F, O'Hara T (2013) Environmental predictors of decapod species richness and turnover along an extensive Australian continental margin (13–35ºS). Mar Ecol 34:298–312

    Article  Google Scholar 

  • McClain CR, Mincks Hardy S (2010) The dynamics of biogeographic ranges in the deep sea. Proc R Soc B Biol Sci 277:3533–3546. doi:10.1098/rspb.2010.1057

    Article  Google Scholar 

  • McEnnulty FR, Gowlett-Holmes KL, Williams A, Althaus F, Fromont J, Poore GCB, O'Hara TD, Marsh L, Kott P, Slack-Smith S, Alderslade P, Kitahara MV (2011) The deepwater megabenthic invertebrates on the continental margin of Australia (100–1100 m depths): composition, distribution and novelty. Records of the Western Australian Museum, Supplement 80:1–191

  • Menot L, Sibuet M, Carney RS, Levin LA, Rowe GT, Billett DSM, Poore GCB, Kitazato H, Vanreusel A, Galéron J, Lavrado HP, Sellanes J, Ingole B, Krylova EM (2010) New perceptions of continental margin biodiversity. In: McIntyre AD (ed) Life in the world’s oceans: diversity, distribution, and abundance. Wiley-Blackwell, Oxford, pp 79–101

    Chapter  Google Scholar 

  • Menzel L, George KH, Arbizu PM (2011) Submarine ridges do not prevent large-scale dispersal of abyssal fauna: a case study of Mesocletodes (Crustacea, Copepoda, Harpacticoida). Deep-Sea Res I 58:839–864. doi:10.1016/j.dsr.2011.05.008

  • Mora C, Rollo A, Tittensor DP (2013) Comment on “Can we name Earth’s species before they go extinct?”. Science 341(6143):237. doi:10.1126/science.1237254

    Article  CAS  PubMed  Google Scholar 

  • Mora C, Tittensor DP, Adl S, Simpson AGB, Worm B (2011) How many species are there on Earth and in the ocean? PLoS Biol 9(8):e1001127. doi:10.1371/journal.pbio.1001127

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Mora C, Tittensor DP, Myers RA (2008) The completeness of taxonomic inventories for describing the global diversity and distribution of marine fishes. Proc R Soc B 275:149–155

    Article  PubMed Central  PubMed  Google Scholar 

  • Moura CJ, Harris DJ, Cunha MR, Rogers AD (2008) DNA barcoding reveals cryptic diversity in marine hydroids (Cnidaria, Hydrozoa) from coastal and deep-sea environments. Zool Scr 37:93–108. doi:10.1111/j.1463-6409.2007.00312.x

    Google Scholar 

  • O'Hara TD, Rowden AA, Bax NJ (2011) A Southern Hemisphere bathyal fauna is distributed in latitudinal bands. Curr Biol 21:1–5. doi:10.1016/j.cub.2011.01.002

    Article  Google Scholar 

  • Oliver J, Hammerstrom K, McPhee-Shaw E, Slattery P, Oakden J, Kim S, Hartwell SI (2011) High species density patterns in macrofaunal invertebrate communities in the marine benthos. Mar Ecol 32:278–288. doi:10.1111/j.1439-0485.2011.00461.x

    Article  Google Scholar 

  • Palma M, Quiroga E, Gallardo VA, Arntz W, Gerdes D, Schneider W, Hebbeln D (2005) Macrobenthic animal assemblages of the continental margin off Chile (22° to 42°S). J Mar Biol Assoc U K 85:233–245. doi:10.1017/S0025315405011112h

    Article  CAS  Google Scholar 

  • Pavithran S, Ingole BS, Nanajkar M, Nath BN (2007) Macrofaunal diversity in the Central Indian Ocean Basin. Biodiversity 8:11–16

    Article  Google Scholar 

  • Pawlowski J, Fahrni J, Lecroq B, Longet D, Cornelius N, Excoffier L, Cedhagen T, Gooday AJ (2007) Bipolar gene flow in deep-sea benthic foraminifera. Mol Ecol 16:4089–4096

    Article  CAS  PubMed  Google Scholar 

  • Pitcher CR, Doherty P, Arnold P, Hooper J, Gribble N, Bartlett C, Browne M, Campbell N, Cannard T, Cappo M, Carini G, Chalmers S, Cheers S, Chetwynd D, Colefax A, Coles R, Cook S, Davie P, De'ath G, Devereux D, Done B, Donovan T, Ehrke B, Ellis N, Ericson G, Fellegara I, Forcey K, Furey M, Gledhill D, Good N, Gordon S, Haywood M, Jacobsen I, Johnson J, Jones M, Kinninmoth S, Kistle S, Last P, Leite A, Marks S, McLeod I, Oczkowicz S, Rose C, Seabright D, Sheils J, Sherlock M, Skelton P, Smith D, Smith G, Speare P, Stowar M, Strickland C, Sutcliffe P, Van der Geest C, Venables W, Walsh C, Wassenberg T, Welna A, Yearsley G (2007) CRC Reef Research Task Final Report. Seabed biodiversity on the continental shelf of the Great Barrier Reef World Heritage Area, AIMS/CSIRO/QM/QDPI, Townsville

  • Poore GCB, Andreakis N (2011) Morphological, molecular and biogeographic evidence support two new species in the Uroptychus naso complex (Crustacea: Decapoda: Chirostylidae). Mol Phylogenet Evol 60:152–169. doi:10.1016/j.ympev.2011.03.032

    Article  PubMed  Google Scholar 

  • Poore GCB, Andreakis N (2012) The Agononida incerta species complex unravelled (Crustacea: Decapoda: Anomura: Munididae). Zootaxa 3429:1–29

    Google Scholar 

  • Poore GCB, Just J, Cohen BF (1994) Composition and diversity of Crustacea Isopoda of the southeastern Australian continental slope. Deep-Sea Res I 41:677–693. doi:10.1016/0967-0637(94)90049-3

  • Poore GCB, McCallum AW, Taylor J (2008) Decapod Crustacea of the continental margin of southwestern and central Western Australia: preliminary identifications of 524 species from FRV Southern Surveyor voyage SS10-2005. Museum Victoria Science Reports 11:1–106

    Google Scholar 

  • Poore GCB, O'Hara TD (2007) Marine biogeography and biodiversity of Australia. In: Connell SD, Gillanders BM (eds) Marine Ecology. Oxford University Press, South Melbourne, pp 177–198

    Google Scholar 

  • Poore GCB, Wilson GDF (1993) Marine species richness (with reply from R.M. May). Nature 361:597–598. doi:10.1038/361597a0

    Article  Google Scholar 

  • Przeslawski R, McArthur MA, Anderson TJ (2013) Infaunal biodiversity patterns from Carnarvon Shelf (Ningaloo Reef), Western Australia. Mar Freshw Res 64:573–583

    Article  Google Scholar 

  • Rao DVS (2005) Comprehensive review of the records of the biota of the Indian Seas and introduction of non-indigenous species. Aquat Conserv Mar Freshwat Ecosyst 15:117–146. doi:10.1002/aqc.659

    Article  Google Scholar 

  • Raupach MJ, Malyutina M, Brandt A, Wägele JW (2007) Molecular data reveal a highly diverse species flock within the munnopsoid deep-sea isopod Betamorpha fusiformis (Barnard, 1920) (Crustacea: Isopoda: Asellota) in the Southern Ocean. Deep Sea Research Part II 54:1820–1830

    Article  Google Scholar 

  • Raupach MJ, Mayer C, Malyutina M, Wägele JW (2009) Multiple origins of deep-sea Asellota (Crustacea: Isopoda) from shallow waters revealed by molecular data. Proc R Soc B 276:799–808

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Raupach MJ, Wägele JW (2006) Distinguishing cryptic species in Antarctic Asellota (Crustacea: Isopoda) – a preliminary study of mitochondrial DNA in. Antarct Sci 18:191–198

    Article  Google Scholar 

  • Rex MA (1981) Community structure in the deep-sea benthos. Annu Rev Ecol Syst 12:331–353

    Article  Google Scholar 

  • Rex MA, Crame JA, Stuart CT, Clarke A (2005) Large-scale biogeographic patterns in marine mollusks: a confluence of history and productivity. Ecology 86:2288–2297

    Article  Google Scholar 

  • Rex MA, Etter RJ (2010) Deep-sea biodiversity. Harvard University Press, Cambridge, Mass, Pattern and scale

    Google Scholar 

  • Rex MA, Etter RJ, Morris JS, Crouse J, McClain CR, Johnson NA, Stuart CT, Deming JW, Thies R, Avery R (2006) Global bathymetric patterns of standing stock and body size in the deep-sea benthos. Mar Ecol Prog Ser 317:1–8

    Article  Google Scholar 

  • Richer de Forges B, Chan T-Y, Corbari L, Lemaitre R, Macpherson E, Ahyong ST (2013) The MUSORSTOM-TDSB deep-sea benthos exploration programme (1976–2012): An overview of crustacean discoveries and new perspectives on deep-sea zoology and biogeography. In: Ahyong ST, Chan T-Y, Corbari L, Ng PKL (eds), Tropical Deep-Sea Benthos Vol. 27. Mémoires du Muséum National d'Histoire Naturelle, Paris 204:13–66

  • Schotte M, Kensley B (2005) New species and records of Flabellifera from the Indian Ocean (Crustacea: Peracarida: Isopoda). J Nat Hist 39:1211–1282

    Article  Google Scholar 

  • Schüller M, Ebbe B (2007) Global distributional patterns of selected deep-sea Polychaeta (Annelida) from the Southern Ocean. Deep-Sea Res II 54:1737–1751. doi:10.1016/j.dsr2.2007.07.005

  • Shank TM (2010) Seamounts: deep-ocean laboratories of faunal connectivity, evolution, and endemism. Oceanography 23:108–122. doi:10.5670/oceanog.2010.65

    Article  Google Scholar 

  • Shtilerman E, Thompson CJ, Stone L, Bode M, Burgman M (2014) A novel method for estimating the number of species within a region. Proc R Soc B Biol Sci 281 (1779) doi:10.1098/rspb.2013.3009

  • Šlapeta J, López-García P, Moreira D (2006) Global dispersal and ancient cryptic species in the smallest marine eukaryotes. Mol Biol Evol 23:23–29

    Article  PubMed  Google Scholar 

  • Thoma JN, Pante E, Brugler MR, France SC (2009) Deep-sea octocorals and antipatharians show no evidence of seamountscale endemism in the NW Atlantic. Mar Ecol Prog Ser 397:25–35

    Article  CAS  Google Scholar 

  • Ugland KI, Gray JS, Ellingsen KE (2003) The species-accumulation curve and estimation of species richness. J Anim Ecol 72:888–897

    Article  Google Scholar 

  • Vrijenhoek RC (2009) Cryptic species, phenotypic plasticity, and complex life histories: assessing deep-sea faunal diversity with molecular markers. Deep-Sea Res II 56:1713–1723. doi:10.1016/j.dsr2.2009.05.016

  • Vrijenhoek RC, Schutz SJ, Gustafson RG, Lutz RA (1994) Cryptic species of deep-sea clams (Mollusca: Bivalvia: Vesicomyidae) from hydrothermal vent and cold-water seep environments. Deep-Sea Res I 41:1171–1189. doi:10.1016/0967-0637(94)90039-6

  • Ward TJ, Rainer SF (1988) Decapod crustaceans of the North West Shelf, a tropical continental shelf of north-western Australia. Aust J Mar Freshwat Res 39:751–765

    Article  Google Scholar 

  • Whittaker RH (1970) Communities and ecosystems. Macmillan, London

    Google Scholar 

  • Williams A, Althaus F, Dunstan P, Poore GCB, Bax NJ, Kloser RJ, McEnnulty FR (2010a) Scales of habitat heterogeneity and megabenthos biodiversity on an extensive Australian continental margin (100–1100 m depths). Mar Ecol 31:222–236. doi:10.1111/j.1439-0485.2009.00355.x

  • Williams A, Koslow JA, Last PR (2001) Diversity, density and community structure of the demersal fish fauna of the continental slope off western Australia (20–35°S). Mar Ecol Prog Ser 212:247–263

    Article  Google Scholar 

  • Williams MJ, Ausubel J, Poiner I, Garcia SM, Baker DJ, Clark MR, Mannix H, Yarincik K, Halpin PN (2010b) Making marine life count: a new baseline for policy. PLoS Biol 8(10):e1000531

    Article  PubMed Central  PubMed  Google Scholar 

  • Wilson GDF (2008) Local and regional species diversity of benthic Isopoda (Crustacea) in the deep Gulf of Mexico. Deep-Sea Res II 55:2634–2649

  • Wilson RS, Hutchings P, Glasby CJ (eds) (2003) Polychaetes: an interactive Identification Guide (CD-ROM). CSIRO Publishing, Melbourne

    Google Scholar 

  • Woolley SNC, McCallum AW, Wilson R, O'Hara TD, Dunstan PK (2013) Fathom out: biogeographical subdivision across the Western Australian continental margin – a multispecies modelling approach. Divers Distrib 19:1506–1517. doi:10.1111/ddi.12119

    Article  Google Scholar 

  • WoRMS Editorial Board (2014) World Register of Marine Species. Available from http://www.marinespecies.org at VLIZ. Accessed 2014-05-16.

Download references

Acknowledgments

We are grateful to many colleagues from CSIRO Marine and Atmospheric Research for their contributions to the Voyages of Discovery research program. We thank Nic Bax for help in securing funds, Rudy Kloser for his part in leadership of the surveys, Franzis Althaus who prepared the map, and Mark Lewis, Bruce Barker, and Karen Gowlett-Holmes for taking the samples while on board the FRV Southern Surveyor. They were assisted by Julian Finn (Museum Victoria). We acknowledge the Commonwealth Department of Sustainability, Environment, Water, Population, and Communities, and the CSIRO Wealth from Oceans Flagship for financial support and the field and laboratory components of the Voyages of Discovery program. We appreciate the valuable contribution of Jim Lowry (Australian Museum) who identified some amphipods, Jean Just (Copenhagen) who commented on some asellote isopod identifications, Kamille Hammerstrom (Moss Landing Marine Laboratories) who provided data from the Californian study, and anonymous referees for commentary on earlier versions of this paper.

This work has been funded through the National Environmental Research Program (NERP) program, an Australian Government initiative supporting world class, public good research. The NERP Marine Biodiversity Hub is a collaborative partnership between the University of Tasmania, CSIRO Wealth from Oceans Flagship, Geoscience Australia, Australian Institute of Marine Science, Museum Victoria, Charles Darwin University, and the University of Western Australia (www.nerpmarine.edu.au). The contribution of M. Błażewicz-Paszkowycz was supported by the National Science Centre, Poland (contract 7984/B/P01/2011/40). The paper is a contribution to COMARGE (Continental Margin Ecosystems) (http://www.ifremer.fr/comarge/en/index.html), one of 14 Census of Marine Life (CoML http://www.coml.org/) field projects, dedicated to the description and understanding of biodiversity patterns on continental margins.

Contributions of the authors

G. Poore prepared the first draft of the manuscript and saw it to publication; he and N. Bruce identified and commented on the isopods, M. Błażewicz-Paszkowycz contributed data on tanaidaceans, A. Syme on myodocopid ostracods, G. Walker-Smith on amphipods, cumaceans, and leptostracans with help from J. Taylor for Phoxocephalidae and S. Gerken on cumaceans, M. Warne on podocopid and platycopid ostracods; E. Greaves, C. Glasby, C. Watson, S. Woolley and R. Wilson identified polychaetes and R. Wilson contributed to the discussion of global diversity; J. Browne and D. Staples extracted specimens from sediments and sorted to major taxon; Anna McCallum calculated the species accumulation curves; and A. Williams initiated and organised the sampling, managed the research program and provided valuable insights into the discussion.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gary C. B. Poore.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(DOCX 27 kb)

ESM 2

(DOCX 57 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Poore, G.C.B., Avery, L., Błażewicz-Paszkowycz, M. et al. Invertebrate diversity of the unexplored marine western margin of Australia: taxonomy and implications for global biodiversity. Mar Biodiv 45, 271–286 (2015). https://doi.org/10.1007/s12526-014-0255-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12526-014-0255-y

Keywords

Navigation