Skip to main content
Log in

Cerebral Cortical Activity Following Non-invasive Cerebellar Stimulation—a Systematic Review of Combined TMS and EEG Studies

  • Review
  • Published:
The Cerebellum Aims and scope Submit manuscript

Abstract

The cerebellum sends dense projections to both motor and non-motor regions of the cerebral cortex via the cerebellarthalamocortical tract. The integrity of this tract is crucial for healthy motor and cognitive function. This systematic review examines research using transcranial magnetic stimulation (TMS) and transcranial direct current stimulation (tDCS) to the cerebellum with combined cortical electroencephalography (EEG) to explore the temporal features of cerebellar-cortical connectivity. A detailed discussion of the outcomes and limitations of the studies meeting review criteria is presented. Databases were searched between 1 December 2017 and 6 December 2017, with Scopus alerts current as of 23 July 2019. Of the 407 studies initially identified, 10 met review criteria. Findings suggested that cerebellar-cortical assessment is suited to combined TMS and EEG, although work is required to ensure experimental procedures are optimal for eliciting a reliable cerebellar response from stimulation. A distinct variation in methodologies and outcome measures employed across studies, and small sample sizes limited the conclusions that could be drawn regarding the electrophysiological signatures of cerebellar-cortical communication. This review highlights the need for stringent protocols and methodologies for cerebellar-cortical assessments via combined TMS and EEG. With these in place, combined TMS and EEG will provide a valuable means for exploring cerebellar connectivity with a wide range of cortical sites. Assessments have the potential to aid in the understanding of motor and cognitive function in both healthy and clinical groups, and provide insights into long-range neural communication generally.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Keser Z, Hasan KM, Mwangi BI, Kamali A, Ucisik-Keser FE, Riascos RF, et al. Diffusion tensor imaging of the human cerebellar pathways and their interplay with cerebral macrostructure. Front Neuroanat. 2015;9:41.

    Article  PubMed  PubMed Central  Google Scholar 

  2. Dum RP, Strick PL. An unfolded map of the cerebellar dentate nucleus and its projections to the cerebral cortex. J Neurophysiol. 2003;89:634–9.

    Article  PubMed  Google Scholar 

  3. Stoodley CJ. The cerebellum and cognition: evidence from functional imaging studies. Cerebellum. 2012;11(2):352–65.

    Article  PubMed  Google Scholar 

  4. Kelly RM, Strick PL. Cerebellar loops with motor cortex and prefrontal cortex of a nonhuman primate. J Neurosci. 2003;23(23):8432–44.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Stoodley CJ, Schmahmann JD. Evidence for topographic organization in the cerebellum of motor control versus cognitive and affective processing. Cortex. 2010;46(7):831–44.

    Article  PubMed  PubMed Central  Google Scholar 

  6. Kratochwil CF, Maheshwari U, Rijli FM. The long journey of pontine nuclei neurons: from rhombic lip to cortico-ponto-cerebellar circuitry. Front Neural Circuits. 2017;11:33.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  7. Palesi F, De Rinaldis A, Castellazzi G, Calamante F, Muhlert N, Chard D, et al. Contralateral cortico-ponto-cerebellar pathways reconstruction in humans in vivo: implications for reciprocal cerebro-cerebellar structural connectivity in motor and non-motor areas. Sci Rep. 2017;7(1):12841.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  8. Ramnani N. Frontal lobe and posterior parietal contributions to the cortico-cerebellar system. Cerebellum. 2012;11(2):366–83.

    Article  PubMed  Google Scholar 

  9. Ishikawa T, Tomatsu S, Tsunoda Y, Lee J, Hoffman DS, Kakei S. Releasing dentate nucleus cells from Purkinje cell inhibition generates output from the cerebrocerebellum. PLoS One. 2014;9(10):e108774.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  10. Buckner RL. The cerebellum and cognitive function: 25 years of insight from anatomy and neuroimaging. Neuron. 2013;80(3):807–15.

    Article  CAS  PubMed  Google Scholar 

  11. Ramnani N, Toni I, Josephs O, Ashburner J, Passingham RE. Learning- and expectation-related changes in the human brain during motor learning. J Neurophysiol. 2000;84(6):3026–35.

    Article  CAS  PubMed  Google Scholar 

  12. Koziol LF, Budding D, Andreasen N, D’Arrigo S, Bulgheroni S, Imamizu H, et al. Consensus paper: the cerebellum’s role in movement and cognition. Cerebellum. 2014;13(1):151–77.

    Article  PubMed  PubMed Central  Google Scholar 

  13. Groiss SJ, Ugawa Y. Cerebellar stimulation in ataxia. Cerebellum. 2012;11(2):440–2.

    Article  PubMed  Google Scholar 

  14. Lu MK, Chen JC, Chen CM, Duann JR, Ziemann U, Tsai CH. Impaired cerebellum to primary motor cortex associative plasticity in Parkinson’s disease and spinocerebellar ataxia type 3. Front Neurol. 2017;8:445.

    Article  PubMed  PubMed Central  Google Scholar 

  15. Daskalakis ZJ, Christensen BK, Fitzgerald PB, Fountain SI, Chen R. Reduced cerebellar inhibition in schizophrenia: a preliminary study. Am J Psychiatr. 2005;162(6):1203–5.

    Article  PubMed  Google Scholar 

  16. Shirota Y, Hamada M, Hanajima R, Terao Y, Matsumoto H, Ohminami S, et al. Cerebellar dysfunction in progressive supranuclear palsy: a transcranial magnetic stimulation study. Mov Disord. 2010;25(14):2413–9.

    Article  PubMed  Google Scholar 

  17. Wu T, Hallett M. The cerebellum in Parkinson’s disease. Brain. 2013;136(3):696–709.

    Article  PubMed  PubMed Central  Google Scholar 

  18. Igelstrom KM, Webb TW, Graziano MSA. Functional connectivity between the temporoparietal cortex and cerebellum in autism spectrum disorder. Cereb Cortex. 2017;27(4):2617–27.

    PubMed  Google Scholar 

  19. Rogers TD, McKimm E, Dickson PE, Goldowitz D, Blaha CD, Mittleman G. Is autism a disease of the cerebellum? An integration of clinical and pre-clinical research. Front Syst Neurosci. 2013;7:15.

    Article  PubMed  PubMed Central  Google Scholar 

  20. Fernandez L, Major BP, Teo WP, Byrne LK, Enticott PG. Assessing cerebellar brain inhibition (CBI) via transcranial magnetic stimulation (TMS): a systematic review. Neurosci Biobehav Rev. 2018;86:176–206.

    Article  PubMed  Google Scholar 

  21. Ugawa Y, Yoshikazu U, Terao Y, Hanajima R, Kanazawa I. Magnetic stimulation over the cerebellum in humans. Ann Neurol. 1995;37(6):703–13.

    Article  CAS  PubMed  Google Scholar 

  22. Sauvé WM, Crowther LJ. The science of transcranial magnetic stimulation. Psychiatr Ann. 2014;44(6):279–83.

    Article  Google Scholar 

  23. Wassermann EM, Epstein CM, Ziemann U, Walsh V, Paus T, Lisanby SH, editors. Oxford handbook of transcranial stimulation. 1st ed. New York: Oxford University Press; 2008.

    Google Scholar 

  24. Rogasch NC, Fitzgerald PB. Assessing cortical network properties using TMS-EEG. Hum Brain Mapp. 2013;34(7):1652–69.

    Article  PubMed  Google Scholar 

  25. Rogasch NC, Sullivan C, Thomson RH, Rose NS, Bailey NW, Fitzgerald PB, et al. Analysing concurrent transcranial magnetic stimulation and electroencephalographic data: a review and introduction to the open-source TESA software. Neuroimage. 2017;147:934–51.

    Article  PubMed  Google Scholar 

  26. Hill AT, Rogasch NC, Fitzgerald PB, Hoy KE. TMS-EEG: a window into the neurophysiological effects of transcranial electrical stimulation in non-motor brain regions. Neurosci Biobehav Rev. 2016;64:175–84.

    Article  PubMed  Google Scholar 

  27. Chung SW, Rogasch NC, Hoy KE, Fitzgerald PB. Measuring brain stimulation induced changes in cortical properties using TMS-EEG. Brain Stimul. 2015;8(6):1010–20.

    Article  PubMed  Google Scholar 

  28. Du X, Choa FS, Summerfelt A, Rowland LM, Chiappelli J, Kochunov P, et al. N100 as a generic cortical electrophysiological marker based on decomposition of TMS-evoked potentials across five anatomic locations. Exp Brain Res. 2017;235(1):69–81.

    Article  CAS  PubMed  Google Scholar 

  29. Tremblay S, Rogasch NC, Premoli I, Blumberger DM, Casarotto S, Chen R, et al. Clinical utility and prospective of TMS–EEG. Clinical Neurophysiology. 2019.

  30. Herrmann CS, Rach S, Vosskuhl J, Struber D. Time-frequency analysis of event-related potentials: a brief tutorial. Brain Topogr. 2014;27(4):438–50.

    Article  PubMed  Google Scholar 

  31. Rogasch NC, Daskalakis ZJ, Fitzgerald PB. Cortical inhibition of distinct mechanisms in the dorsolateral prefrontal cortex is related to working memory performance: a TMS-EEG study. Cortex. 2015;64:68–77.

    Article  PubMed  Google Scholar 

  32. Fries P. A mechanism for cognitive dynamics: neuronal communication through neuronal coherence. Trends Cogn Sci. 2005;9(10):474–80.

    Article  PubMed  Google Scholar 

  33. Bortoletto M, Veniero D, Thut G, Miniussi C. The contribution of TMS-EEG coregistration in the exploration of the human cortical connectome. Neurosci Biobehav Rev. 2015;49:114–24.

    Article  PubMed  Google Scholar 

  34. Garcia JO, Grossman ED, Srinivasan R. Evoked potentials in large-scale cortical networks elicited by TMS of the visual cortex. J Neurophysiol. 2011;106(4):1734–46.

    Article  PubMed  PubMed Central  Google Scholar 

  35. Thut G, Miniussi C. New insights into rhythmic brain activity from TMS-EEG studies. Trends Cogn Sci. 2009;13(4):182–9.

    Article  PubMed  Google Scholar 

  36. Rosanova M, Casali A, Bellina V, Resta F, Mariotti M, Massimini M. Natural frequencies of human corticothalamic circuits. J Neurosci. 2009;29(24):7679–85.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Ito M. Mechanisms of motor learning in the cerebellum. Brain Res. 2000;886:237–45.

    Article  CAS  PubMed  Google Scholar 

  38. Na J, Kakei S, Shinoda Y. Cerebellar input to corticothalamic neurons in layers V and VI in the motor cortex. Neurosci Res. 1997;28:77–91.

    Article  CAS  PubMed  Google Scholar 

  39. Ando N, Izawa Y, Shinoda Y. Relative contributions of thalamic reticular nucelus neurons and intrinsic interneurons to inhibition of thalamic neurons projecting to the motor cortex. J Neurophysiol. 1995;73(6):2470–85.

    Article  CAS  PubMed  Google Scholar 

  40. Shinoda Y, Kakei S, Futami T, Wannier T. Thalamocortical organization in the cerebello-thalamo-cortical system. Cereb Cortex. 1993;3:421–9.

    Article  CAS  PubMed  Google Scholar 

  41. Habas C, Kamdar N, Nguyen D, Keller K, Beckmann CF, Menon V, et al. Distinct cerebellar contributions to intrinsic connectivity networks. J Neurosci. 2009;29(26):8586–94.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Habas C. Functional imaging of the deep cerebellar nuclei: a review. Cerebellum. 2010;9(1):22–8.

    Article  PubMed  Google Scholar 

  43. Strick PL, Dum RP, Fiez JA. Cerebellum and nonmotor function. Annu Rev Neurosci. 2009;32:413–34.

    Article  CAS  PubMed  Google Scholar 

  44. Coffman KA, Dum RP, Strick PL. Cerebellar vermis is a target of projections from the motor areas in the cerebral cortex. Proc Natl Acad Sci U S A. 2011;108(38):16068–73.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Farzan F, Pascual-Leone A, Schmahmann JD, Halko M. Enhancing the temporal complexity of distributed brain networks with patterned cerebellar stimulation. Sci Rep. 2016;6.

  46. Buckner RL, Krienen FM, Castellanos A, Diaz JC, Yeo BT. The organization of the human cerebellum estimated by intrinsic functional connectivity. J Neurophysiol. 2011;106(5):2322–45.

    Article  PubMed  PubMed Central  Google Scholar 

  47. Gornati SV, Schafer CB, Eelkman Rooda OHJ, Nigg AL, De Zeeuw CI, Hoebeek FE. Differentiating cerebellar impact on thalamic nuclei. Cell Rep. 2018;23(9):2690–704.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Holdefer RN, Miller LE, Chen LL, Houk JC. Functional connectivity between cerebellum and primary motor cortex in the awake monkey. J Neurophysiol. 2000;84(1):585–90.

    Article  CAS  PubMed  Google Scholar 

  49. Grimaldi G, Argyropoulos GP, Boehringer A, Celnik P, Edwards MJ, Ferrucci R, et al. Non-invasive cerebellar stimulation—a consensus paper. Cerebellum. 2014;13(1):121–138.

  50. Rossini PM, Burke D, Chen R, Cohen LG, Daskalakis Z, Di Iorio R, et al. Non-invasive electrical and magnetic stimulation of the brain, spinal cord, roots and peripheral nerves: basic principles and procedures for routine clinical and research application. An updated report from an I.F.C.N. Committee. Clin Neurophysiol. 2015;126(6):1071–107.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Romero MC, Davare M, Armendariz M, Janssen P. Neural effects of transcranial magnetic stimulation at the single-cell level. Nat Commun. 2019;10(1):2642.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  52. Fernandez L, Major BP, Teo WP, Byrne LK, Enticott PG. The impact of stimulation intensity and coil type on reliability and tolerability of cerebellar brain inhibition (CBI) via dual-coil TMS. Cerebellum. 2018.

  53. Hallett M, Wassermann EM, Pascual-Leone Á, Valls-Solé J. Repetitive transcranial magnetic stimulation. In: Deuschl G, Eisen A, editors. Recommendations for the practise of clinical neurophysiology: guidelines of the International Federation of Clinical Physiology (EEG Suppl 52): Elservier Science B.V.; 1999. p. 105–13.

  54. Rossi S, Hallett M, Rossini PM, Pascual-Leone A. Safety of TMSCG. Safety, ethical considerations, and application guidelines for the use of transcranial magnetic stimulation in clinical practice and research. Clin Neurophysiol. 2009;120(12):2008–39.

    Article  PubMed  PubMed Central  Google Scholar 

  55. Harrington A, Hammond-Tooke GD. Theta burst stimulation of the cerebellum modifies the TMS-evoked N100 potential, a marker of GABA inhibition. PLoS One. 2015;10(11):e0141284.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  56. Fitzgerald PB, Fountain S, Daskalakis ZJ. A comprehensive review of the effects of rTMS on motor cortical excitability and inhibition. Clin Neurophysiol. 2006;117(12):2584–96.

    Article  PubMed  Google Scholar 

  57. Huang EMJ, Rounis E, Bhatia KP, Rothwell JC. Theta burst stimulation of the human motor cortex. Neuron. 2005;45(2):201–6.

    Article  CAS  PubMed  Google Scholar 

  58. Hamada M, Murase N, Hasan A, Balaratnam M, Rothwell JC. The role of interneuron networks in driving human motor cortical plasticity. Cereb Cortex. 2013;23(7):1593–605.

    Article  PubMed  Google Scholar 

  59. Popa T, Russo M, Meunier S. Long-lasting inhibition of cerebellar output. Brain Stimul. 2010;3(3):161–9.

    Article  CAS  PubMed  Google Scholar 

  60. Harrington A, Hammond-Tooke GD. Theta burst stimulation of the cerebellum modifies the TMS-evoked N100 potential, a marker of GABA inhibition. PLoS One. 2015;10(11).

  61. Koch G, Mori F, Marconi B, Codecà C, Pecchioli C, Salerno S, et al. Changes in intracortical circuits of the human motor cortex following theta burst stimulation of the lateral cerebellum. Clin Neurophysiol. 2008;119(11):2559–69.

    Article  PubMed  Google Scholar 

  62. Huang ZJ, Di Cristo G, Ango F. Development of GABA innervation in the cerebral and cerebellar cortices. Nat Rev Neurosci. 2007;8(9):673–86.

    Article  CAS  PubMed  Google Scholar 

  63. Nitsche MA, Cohen LG, Wassermann EM, Priori A, Lang N, Antal A, et al. Transcranial direct current stimulation: state of the art 2008. Brain Stimul. 2008;1(3):206–23.

    Article  PubMed  Google Scholar 

  64. van Dun K, Bodranghien FC, Marien P, Manto MU. tDCS of the cerebellum: where do we stand in 2016? Technical issues and critical review of the literature. Front Hum Neurosci. 2016;10:199.

    PubMed  PubMed Central  Google Scholar 

  65. Chew T, Ho KA, Loo CK. Inter- and intra-individual variability in response to transcranial direct current stimulation (tDCS) at varying current intensities. Brain Stimul. 2015;8(6):1130–7.

    Article  PubMed  Google Scholar 

  66. Tremblay S, Austin D, Hannah R, Rothwell JC. Non-invasive brain stimulation as a tool to study cerebellar-M1 interactions in humans. Cerebellum Ataxias. 2016;3:19.

    Article  PubMed  PubMed Central  Google Scholar 

  67. Li LM, Uehara K, Hanakawa T. The contribution of interindividual factors to variability of response in transcranial direct current stimulation studies. Front Cell Neurosci. 2015;9:181.

    PubMed  PubMed Central  Google Scholar 

  68. Fernandez L, Albein-Urios N, Kirkovski M, McGinley JL, Murphy AT, Hyde C, et al. Cathodal transcranial direct current stimulation (tDCS) to the right cerebellar hemisphere affects motor adaptation during gait. Cerebellum. 2017;16(1):168–77.

    Article  PubMed  Google Scholar 

  69. Jayaram G, Tang B, Pallegadda R, Vasudevan EV, Celnik P, Bastian A. Modulating locomotor adaptation with cerebellar stimulation. J Neurophysiol. 2012;107(11):2950–7.

    Article  PubMed  PubMed Central  Google Scholar 

  70. Galea JM, Vazquez A, Pasricha N, de Xivry JJ, Celnik P. Dissociating the roles of the cerebellum and motor cortex during adaptive learning: the motor cortex retains what the cerebellum learns. Cereb Cortex. 2011;21(8):1761–70.

    Article  PubMed  Google Scholar 

  71. Pope PA, Miall RC. Task-specific facilitation of cognition by cathodal transcranial direct current stimulation of the cerebellum. Brain Stimul. 2012;5(2):84–94.

    Article  PubMed  PubMed Central  Google Scholar 

  72. Galea JM, Jayaram G, Ajagbe L, Celnik P. Modulation of cerebellar excitability by polarity-specific noninvasive direct current stimulation. J Neurosci. 2009;29(28):9115–22.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Basar E, Basar-Eroglu C, Karakas S, Schurmann M. Are cognitive processes manifested in event-related gamma, alpha, theta and delta oscillations in the EEG? Neurosci Lett. 1999;259:165–8.

    Article  CAS  PubMed  Google Scholar 

  74. Rangaswamy M, Porjesz B. From event-related potential to oscillations: genetic diathesis in brain dys(function) and alcohol dependence. Alcohol Res Health. 2008;31(3):238–42.

    PubMed  PubMed Central  Google Scholar 

  75. Luck SJ. An introduction to the event-related potential technique. 2d ed: The MIT Press 2014.

  76. Kirschstein T, Kohling R. What is the source of the EEG? Clinical EEG and Neuroscience. 2009;40:146–9.

    Article  PubMed  Google Scholar 

  77. Rogasch NC, Thomson RH, Daskalakis ZJ, Fitzgerald PB. Short-latency artifacts associated with concurrent TMS-EEG. Brain Stimul. 2013;6(6):868–76.

    Article  PubMed  Google Scholar 

  78. Komssi S, Aronen H, Huttunen J, Kesaniemi M, Soinne L, Nikouline V, et al. Ipsi- and contralateral EEG reactions to transcranial magnetic stimulation. Clin Neurophysiol. 2002;113(2):175–84.

    Article  PubMed  Google Scholar 

  79. Biabani M, Fornito A, Mutanen T, Morrow J, Rogasch NC. Characterizing and minimizing the contribution of sensory inputs to TMS-evoked potentials. BioRxiv. 2018.

  80. Paus T, Sipila PK, Strafella AP. Synchronization of neuronal activity in the human primary motor cortex by transcranial magnetic stimulation: an EEG study. J Neurophysiol. 2001;86:1983–90.

    Article  CAS  PubMed  Google Scholar 

  81. Bonato C, Miniussi C, Rossini PM. Transcranial magnetic stimulation and cortical evoked potentials: a TMS/EEG co-registration study. Clin Neurophysiol. 2006;117(8):1699–707.

    Article  CAS  PubMed  Google Scholar 

  82. Komssi S, Kahkonen S, Ilmoniemi RJ. The effect of stimulus intensity on brain responses evoked by transcranial magnetic stimulation. Hum Brain Mapp. 2004;21(3):154–64.

    Article  PubMed  PubMed Central  Google Scholar 

  83. Pellicciari MC, Veniero D, Miniussi C. Characterizing the cortical oscillatory response to TMS pulse. Front Cell Neurosci. 2017;11:38.

    Article  PubMed  PubMed Central  Google Scholar 

  84. Sekiguchi H, Takeuchi S, Kadota H, Kohno Y, Nakajima Y. TMS-induced artifacts on EEG can be reduced by rearrangement of the electrode’s lead wire before recording. Clin Neurophysiol. 2011;122(5):984–90.

    Article  PubMed  Google Scholar 

  85. Ilmoniemi RJ, Kicic D. Methodology for combined TMS and EEG. Brain Topogr. 2010;22(4):233–48.

    Article  PubMed  Google Scholar 

  86. Conde V, Tomasevic L, Akopian I, Stanek K, Saturnino GB, Thielscher A, et al. The non-transcranial TMS-evoked potential is an inherent source of ambiguity in TMS-EEG studies. Neuroimage. 2018;185:300–12.

    Article  PubMed  Google Scholar 

  87. Casula EP, Pellicciari MC, Ponzo V, Stampanoni Bassi M, Veniero D, Caltagirone C, et al. Cerebellar theta burst stimulation modulates the neural activity of interconnected parietal and motor areas. Sci Rep 2016;6.

  88. Acsady L. The thalamic paradox. Nat Neurosci. 2017;20(7):901–2.

    Article  CAS  PubMed  Google Scholar 

  89. Basar E. Brain oscillations in neuropsychiatric disease. Dialogues Clin Neurosci. 2013;15(3):291–300.

    PubMed  PubMed Central  Google Scholar 

  90. Buzsaki G, Draguhn A. Neural oscillations in cortical networks. Science. 2004;304(5679):1926–9.

    Article  CAS  PubMed  Google Scholar 

  91. Nyhus E, Curran T. Functional role of gamma and theta oscillations in episodic memory. Neurosci Biobehav Rev. 2010;34(7):1023–35.

    Article  PubMed  PubMed Central  Google Scholar 

  92. Becker R, Van de Ville D, Kleinschmidt A. Alpha oscillations reduce temporal long-range dependence in spontaneous human brain activity. J Neurosci. 2018;38(3):755–64.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Varela F, Lachaux JP, Rodriguez E, Martinerie J. The brainweb: synchonization and large-scale integration. Nat Rev Neurosci. 2001;2:229–39.

    Article  CAS  PubMed  Google Scholar 

  94. Bak P, Tang C, Wiesenfeld K. Self-organized criticality: an explanation of the 1/f noise. Phys Rev Lett. 1987;59(4):381–4.

    Article  CAS  PubMed  Google Scholar 

  95. Csicsvari J, Jamieson B, Wise KD, Buzsaki G. Mechanisms of gamma oscillations in the hippocampus of the behaving rat. Neuron. 2003;37:311–22.

    Article  CAS  PubMed  Google Scholar 

  96. Hamel-Thibault A, Thenault F, Whittingstall K, Bernier PM. Delta-band oscillations in motor regions predict hand selection for reaching. Cereb Cortex. 2018;28(2):574–84.

    PubMed  Google Scholar 

  97. Wyart V, de Gardelle V, Scholl J, Summerfield C. Rhythmic fluctuations in evidence accumulation during decision making in the human brain. Neuron. 2012;76(4):847–58.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Lakatos P, Karmos G, Mehta AD, Ulbert I, Schroeder CE. Entrainment of neuronal oscillations as a mechanism of attentional selection. Science. 2008;320:110–3.

    Article  CAS  PubMed  Google Scholar 

  99. Sakihara K, Gunji A, Furushima W, Inagaki M. Event-related oscillations in structural and semantic encoding of faces. Clin Neurophysiol. 2012;123(2):270–7.

    Article  PubMed  Google Scholar 

  100. Wang J, Chen Z, Peng X, Yang T, Li P, Cong F, et al. To know or not to know? Theta and delta reflect complementary information about an advanced cue before feedback in decision-making. Front Psychol. 2016;7:1556.

    PubMed  PubMed Central  Google Scholar 

  101. Knyazev GG. EEG delta oscillations as a correlate of basic homeostatic and motivational processes. Neurosci Biobehav Rev. 2012;36(1):677–95.

    Article  PubMed  Google Scholar 

  102. Sambrook TD, Goslin J. Principal components analysis of reward prediction errors in a reinforcement learning task. Neuroimage. 2016;124(Pt A):276–86.

    Article  PubMed  Google Scholar 

  103. Steriade M, Nunez A, Amzica F. Intracellular analysis of relations between the slow (<1 Hz) neocortical osciallation and other sleep rhythms of the electroencephalogram. J Neurosci. 1993;13(8):3266–83.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Zhang W, Lu J, Liu X, Fang H, Li H, Wang D, et al. Event-related synchronization of delta and beta oscillations reflects developmental changes in the processing of affective pictures during adolescence. Int J Psychophysiol. 2013;90(3):334–40.

    Article  PubMed  Google Scholar 

  105. Guntekin B, Basar E. Review of evoked and event-related delta responses in the human brain. Int J Psychophysiol. 2016;103:43–52.

    Article  PubMed  Google Scholar 

  106. Andre P, Arrighi P. Modulation of Purkinje cell response to glutamate during the sleep-wake cycle. Neuroscience. 2001;105(3):731–46.

    Article  CAS  PubMed  Google Scholar 

  107. Rowland NC, Goldberg JA, Jaeger D. Cortico-cerebellar coherence and causal connectivity during slow-wave activity. Neuroscience. 2010;166(2):698–711.

    Article  CAS  PubMed  Google Scholar 

  108. Parker KL, Kim YC, Kelley RM, Nessler AJ, Chen KH, Muller-Ewald VA, et al. Delta-frequency stimulation of cerebellar projections can compensate for schizophrenia-related medial frontal dysfunction. Mol Psychiatry. 2017;22(5):647–55.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Colgin LL. Mechanisms and functions of theta rhythms. Annu Rev Neurosci. 2013;36:295–312.

    Article  CAS  PubMed  Google Scholar 

  110. Tsanov M, Chah E, Wright N, Vann SD, Reilly R, Erichsen JT, et al. Oscillatory entrainment of thalamic neurons by theta rhythm in freely moving rats. J Neurophysiol. 2011;105(1):4–17.

    Article  PubMed  Google Scholar 

  111. Asada H, Fukuda Y, Tsunoda S, Yamaguchi M, Tonoike M. Frontal midline theta rhythms reflect alternative activation of prefrontal cortex and antierior cingulate cortex in humans. Neurosci Lett. 1999;274:29–32.

    Article  CAS  PubMed  Google Scholar 

  112. Gevins A, Smith ME, McEvoy L, Yu D. High-resolution EEG mapping of cortical activation related to working memory: effects of task difficulty, type of processing, and practise. Cereb Cortex. 1997;7:374–85.

    Article  CAS  PubMed  Google Scholar 

  113. Anderson KL, Rajagovindan R, Ghacibeh GA, Meador KJ, Ding M. Theta oscillations mediate interaction between prefrontal cortex and medial temporal lobe in human memory. Cereb Cortex. 2010;20(7):1604–12.

    Article  PubMed  Google Scholar 

  114. Backus AR, Schoffelen JM, Szebenyi S, Hanslmayr S, Doeller CF. Hippocampal-prefrontal theta oscillations support memory integration. Curr Biol. 2016;26(4):450–7.

    Article  CAS  PubMed  Google Scholar 

  115. O'Neill PK, Gordon JA, Sigurdsson T. Theta oscillations in the medial prefrontal cortex are modulated by spatial working memory and synchronize with the hippocampus through its ventral subregion. J Neurosci. 2013;33(35):14211–24.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Onton J, Delorme A, Makeig S. Frontal midline EEG dynamics during working memory. Neuroimage. 2005;27(2):341–56.

    Article  PubMed  Google Scholar 

  117. Hoffmann LC, Berry SD. Cerebellar theta oscillations are synchronized during hippocampal theta-contingent trace conditioning. Proc Natl Acad Sci U S A. 2009;106(50):21371–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Schutter DJLG, van Honk J. An electrophysiological link between the cerebellum, cognition and emotion: frontal theta EEG activity to single-pulse cerebellar TMS. NeuroImage. 2006;33(4):1227–31.

    Article  PubMed  Google Scholar 

  119. Aftanas LI, Golocheikine SA. Human anterior and frontal midline theta and lower alpha reflect emotionally positive state and internalized attention: high-resolution EEG investigation of meditation. Neurosci Lett. 2001;310:57–60.

    Article  CAS  PubMed  Google Scholar 

  120. Keller AS, Payne L, Sekuler R. Characterizing the roles of alpha and theta oscillations in multisensory attention. Neuropsychologia. 2017;99:48–63.

    Article  PubMed  PubMed Central  Google Scholar 

  121. Schmahmann JD. The cerebrocerebellar system: anatomic substrates of the cerebellar contribution to cognition and emotion. International Review of Psychiatry. 2001;13(4):247–60.

    Article  Google Scholar 

  122. Mannarelli D, Pauletti C, De Lucia MC, Delle Chiaie R, Bersani FS, Spagnoli F, et al. Effects of cerebellar transcranial direct current stimulation on attentional processing of the stimulus: evidence from an event-related potentials study. Neuropsychologia. 2016;84:127–35.

    Article  PubMed  Google Scholar 

  123. Kellermann T, Regenbogen C, De Vos M, Mossnang C, Finkelmeyer A, Habel U. Effective connectivity of the human cerebellum during visual attention. J Neurosci. 2012;32(33):11453–60.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Schutter DJLG, van Honk J. The cerebellum on the rise in human emotion. Cerebellum (London, England). 2005;4(4):290–4.

    Article  Google Scholar 

  125. De Zeeuw CI, Hoebeek FE, Schonewille M. Causes and consequences of oscillations in the cerebellar cortex. Neuron. 2008;58(5):655–8.

    Article  PubMed  CAS  Google Scholar 

  126. D'Angelo E, Solinas S, Mapelli J, Gandolfi D, Mapelli L, Prestori F. The cerebellar Golgi cell and spatiotemporal organization of granular layer activity. Front Neural Circuits. 2013;7:93.

    Article  PubMed  PubMed Central  Google Scholar 

  127. Dalal SS, Osipova D, Bertrand O, Jerbi K. Oscillatory activity of the human cerebellum: the intracranial electrocerebellogram revisited. Neurosci Biobehav Rev. 2013;37(4):585–93.

    Article  PubMed  Google Scholar 

  128. Kistler WM, De Zeeuw CI. Time windows and reverberating loops: a reverse-engineering approach to cerebellar function. Cerebellum. 2003;2:44–54.

    Article  PubMed  Google Scholar 

  129. Sadaghiani S, Kleinschmidt A. Brain networks and alpha-oscillations: structural and functional foundations of cognitive control. Trends Cogn Sci. 2016;20(11):805–17.

    Article  PubMed  Google Scholar 

  130. Payne L, Guillory S, Sekuler R. Attention-modulated alpha-band oscillations protect against intrusion of irrelevant information. J Cogn Neurosci. 2013;25(9):1463–76.

    Article  PubMed  PubMed Central  Google Scholar 

  131. Banerjee S, Snyder AC, Molholm S, Foxe JJ. Oscillatory alpha-band mechanisms and the deployment of spatial attention to anticipated auditory and visual target locations: supramodal or sensory-specific control mechanisms? J Neurosci. 2011;31(27):9923–32.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. Karbowski K. Hans Berger (1873–1941). J Neurol. 2002;249(8):1130–1.

    Article  CAS  PubMed  Google Scholar 

  133. Harris AM, Dux PE, Jones CN, Mattingley JB. Distinct roles of theta and alpha oscillations in the involuntary capture of goal-directed attention. Neuroimage. 2017;152:171–83.

    Article  PubMed  Google Scholar 

  134. Doesburg SM, Green JJ, McDonald JJ, Ward LM. From local inhibition to long-range integration: a functional dissociation of alpha-band synchronization across cortical scales in visuospatial attention. Brain Res. 2009;1303:97–110.

    Article  CAS  PubMed  Google Scholar 

  135. Gips B, van der Eerden JP, Jensen O. A biologically plausible mechanism for neuronal coding organized by the phase of alpha oscillations. Eur J Neurosci. 2016;44(4):2147–61.

    Article  PubMed  PubMed Central  Google Scholar 

  136. Sadaghiani S, Scheeringa R, Lehongre K, Morillon B, Giraud AL, D'Esposito M, et al. alpha-band phase synchrony is related to activity in the fronto-parietal adaptive control network. J Neurosci. 2012;32(41):14305–10.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  137. Raman IM, Bean BP. Ionic currents underlying spontaneous action potentials in isolated cerebellar Purkinje neurons. J Neurosci. 1999;19(5):1663–74.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  138. Womack MD, Khodakhah K. Somatic and dendritic small-conductance calcium-activated potassium channels regulate the output of cerebellar Purkinje neurons. J Neurosci. 2003;23(7):2600–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  139. Watson TC, Becker N, Apps R, Jones MW. Back to front: cerebellar connections and interactions with the prefrontal cortex. Front Syst Neurosci. 2014;8:4.

    Article  PubMed  PubMed Central  Google Scholar 

  140. Spitzer B, Haegens S. Beyond the status quo: a role for beta oscillations in endogenous content (re)activation. eNeuro. 2017;4(4).

  141. Alegre M, Imirizaldu L, Valencia M, Iriarte J, Arcocha J, Artieda J. Alpha and beta changes in cortical oscillatory activity in a go/no go randomly-delayed-response choice reaction time paradigm. Clin Neurophysiol. 2006;117(1):16–25.

    Article  CAS  PubMed  Google Scholar 

  142. Davis NJ, Tomlinson SP, Morgan HM. The role of beta-frequency neural oscillations in motor control. J Neurosci. 2012;32(2):403–4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  143. Pollok B, Latz D, Krause V, Butz M, Schnitzler A. Changes of motor-cortical oscillations associated with motor learning. Neuroscience. 2014;275:47–53.

    Article  CAS  PubMed  Google Scholar 

  144. Brinkman L, Stolk A, Dijkerman HC, de Lange FP, Toni I. Distinct roles for alpha- and beta-band oscillations during mental simulation of goal-directed actions. J Neurosci. 2014;34(44):14783–92.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  145. Kilavik BE, Zaepffel M, Brovelli A, MacKay WA, Riehle A. The ups and downs of beta oscillations in sensorimotor cortex. Exp Neurol. 2013;245:15–26.

    Article  PubMed  Google Scholar 

  146. Takakusaki K. Functional neuroanatomy for posture and gait control. J Mov Disord. 2017;10(1):1–17.

    Article  PubMed  PubMed Central  Google Scholar 

  147. Ioffe ME, Chernikova LA, Ustinova KI. Role of cerebellum in learning postural tasks. Cerebellum. 2007;6(1):87–94.

    Article  CAS  PubMed  Google Scholar 

  148. Khanna P, Carmena JM. Beta band oscillations in motor cortex reflect neural population signals that delay movement onset. Elife. 2017;6.

  149. Pinto AD, Chen R. Suppression of the motor cortex by magnetic stimulation of the cerebellum. Exp Brain Res. 2001;140(4):505–10.

    Article  CAS  PubMed  Google Scholar 

  150. Panyakaew P, Cho HJ, Srivanitchapoom P, Popa T, Wu T, Hallett M. Cerebellar brain inhibition in the target and surround muscles during voluntary tonic activation. European Journal of Neuroscience. 2016.

  151. Zhang Y, Chen Y, Bressler SL, Ding M. Response preparation and inhibition: the role of the cortical sensorimotor beta rhythm. Neuroscience. 2008;156(1):238–46.

    Article  CAS  PubMed  Google Scholar 

  152. Kassavetis P, Hoffland BS, Saifee TA, Bhatia KP, Van De Warrenburg BP, Rothwell JC, et al. Cerebellar brain inhibition is decreased in active and surround muscles at the onset of voluntary movement. Exp Brain Res. 2011;209(3):437–42.

    Article  PubMed  Google Scholar 

  153. Ozdenizci O, Yalcin M, Erdogan A, Patoglu V, Grosse-Wentrup M, Cetin M. Electroencephalographic identifiers of motor adaptation learning. J Neural Eng. 2017;14(4):046027.

    Article  PubMed  Google Scholar 

  154. Edagawa K, Kawasaki M. Beta phase synchronization in the frontal-temporal-cerebellar network during auditory-to-motor rhythm learning. Sci Rep. 2017;7:42721.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  155. Jia X, Kohn A. Gamma rhythms in the brain. PLoS Biol. 2011;9(4):e1001045.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  156. Fries P, Nikolic D, Singer W. The gamma cycle. Trends Neurosci. 2007;30(7):309–16.

    Article  CAS  PubMed  Google Scholar 

  157. Cardin JA, Carlen M, Meletis K, Knoblich U, Zhang F, Deisseroth K, et al. Driving fast-spiking cells induces gamma rhythm and controls sensory responses. Nature. 2009;459(7247):663–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  158. Merker BH. Cortical gamma oscillations: details of their genesis preclude a role in cognition. Front Comput Neurosci. 2016;10:78.

    Article  PubMed  PubMed Central  Google Scholar 

  159. Colgin LL, Denninger T, Fyhn M, Hafting T, Bonnevie T, Jensen O, et al. Frequency of gamma oscillations routes flow of information in the hippocampus. Nature. 2009;462(7271):353–7.

    Article  CAS  PubMed  Google Scholar 

  160. Buzsaki G, Wang XJ. Mechanisms of gamma oscillations. Annu Rev Neurosci. 2012;35:203–25.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  161. Steriade M, Contreras D, Amzica F, Timofeev I. Synchronization of fast (30-40Hz) spontaneous oscillations in intrathalamic and thlamocortical networks. J Neurosci. 1996;16(8):2788–808.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  162. Kujala J, Jung J, Bouvard S, Lecaignard F, Lothe A, Bouet R, et al. Gamma oscillations in V1 are correlated with GABA(A) receptor density: a multi-modal MEG and Flumazenil-PET study. Sci Rep. 2015;5:16347.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  163. Middleton SJ, Racca C, Cunningham MO, Traub RD, Monyer H, Knopfel T, et al. High-frequency network oscillations in cerebellar cortex. Neuron. 2008;58(5):763–74.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  164. Popa D, Spolidoro M, Proville RD, Guyon N, Belliveau L, Lena C. Functional role of the cerebellum in gamma-band synchronization of the sensory and motor cortices. J Neurosci. 2013;33(15):6552–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  165. Thut G, Veniero D, Romei V, Miniussi C, Schyns P, Gross J. Rhythmic TMS causes local entrainment of natural oscillatory signatures. Curr Biol. 2011;21(14):1176–85.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  166. Herring JD, Thut G, Jensen O, Bergmann TO. Attention modulates TMS-locked alpha oscillations in the visual cortex. J Neurosci. 2015;35(43):14435–47.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  167. Van Der Werf YD, Paus T. The neural response to transcranial magnetic stimulation of the human motor cortex. I. Intracortical and cortico-cortical contributions. Exp Brain Res. 2006;175(2):231–45.

    Article  Google Scholar 

  168. Ferrarelli F, Massimini M, Peterson MJ, Riedner BA, Lazar M, Murphy MJ, et al. Reduced evoked gamma oscillations in the frontal cortex in schizophrenia patients: a TMS/EEG study. Am J Psychiatr. 2008;165(8):996–1005.

    Article  PubMed  Google Scholar 

  169. Pigorini A, Casali AG, Casarotto S, Ferrarelli F, Baselli G, Mariotti M, et al. Time-frequency spectral analysis of TMS-evoked EEG oscillations by means of Hilbert-Huang transform. J Neurosci Methods. 2011;198(2):236–45.

    Article  PubMed  Google Scholar 

  170. Plewnia C, Rilk AJ, Soekadar SR, Arfeller C, Huber HS, Sauseng P, et al. Enhancement of long-range EEG coherence by synchronous bifocal transcranial magnetic stimulation. Eur J Neurosci. 2008;27(6):1577–83.

    Article  PubMed  Google Scholar 

  171. Kawasaki M, Uno Y, Mori J, Kobata K, Kitajo K. Transcranial magnetic stimulation-induced global propagation of transient phase resetting associated with directional information flow. Front Hum Neurosci. 2014;8:173.

    Article  PubMed  PubMed Central  Google Scholar 

  172. Mehrkanoon S, Boonstra TW, Breakspear M, Hinder M, Summers JJ. Upregulation of cortico-cerebellar functional connectivity after motor learning. Neuroimage. 2016;128:252–63.

    Article  PubMed  Google Scholar 

  173. Du X, Rowland LM, Summerfelt A, Choa FS, Wittenberg GF, Wisner K, et al. Cerebellar-stimulation evoked prefrontal electrical synchrony is modulated by GABA. Cerebellum. 2018.

  174. Krienen FM, Buckner RL. Segregated fronto-cerebellar circuits revealed by intrinsic functional connectivity. Cereb Cortex. 2009;19(10):2485–97.

    Article  PubMed  PubMed Central  Google Scholar 

  175. Matano S. Brief Communication: proportions of the ventral half of the cerebellar dentate nucleus in humans and great apes. Am J Phys Anthropol. 2001;114:163–5.

    Article  CAS  PubMed  Google Scholar 

  176. Ramnani N. The primate cortico-cerebellar system: anatomy and function. Nat Rev Neurosci. 2006;7(7):511–22.

    Article  CAS  PubMed  Google Scholar 

  177. Schmahmann JD. An emerging concept: the cerebellar contribution to higher function. Arch Neurol. 1991;48(11):1178–87.

    Article  CAS  PubMed  Google Scholar 

  178. Schmahmann JD. The role of the cerebellum in affect and psychosis. Neurolinguistics. 2000;13:189–214.

    Article  Google Scholar 

  179. Epstein CM, Davey KR. Iron-core coils for transcranial magnetic stimulation. J Clin Neurophysiol. 2002;19(4):376–81.

    Article  PubMed  Google Scholar 

  180. Watson TC, Jones MW, Apps R. Electrophysiological mapping of novel prefrontal—cerebellar pathways. Front Integr Neurosci. 2009;3:18.

    Article  PubMed  PubMed Central  Google Scholar 

  181. Cavanagh JF, Frank MJ. Frontal theta as a mechanism for cognitive control. Trends Cogn Sci. 2014;18(8):414–21.

    Article  PubMed  PubMed Central  Google Scholar 

  182. McNaughton N, Gray JA. Anxiolytic action on the behavioural inhibition system implies multiple types of arousal contribute to anxiety. J Affect Disord. 2000;61:161–76.

    Article  CAS  PubMed  Google Scholar 

  183. Lioumis P, Kicic D, Savolainen P, Makela JP, Kahkonen S. Reproducibility of TMS-evoked EEG responses. Hum Brain Mapp. 2009;30(4):1387–96.

    Article  PubMed  Google Scholar 

  184. Gordon PC, Desideri D, Belardinelli P, Zrenner C, Ziemann U. Comparison of cortical EEG responses to realistic sham versus real TMS of human motor cortex. Brain Stimul. 2018;11(6):1322–30.

    Article  PubMed  Google Scholar 

  185. Hardwick RM, Lesage E, Miall RC. Cerebellar transcranial magnetic stimulation: the role of coil geometry and tissue depth. Brain Stimul. 2014;7(5):643–9.

    Article  PubMed  PubMed Central  Google Scholar 

  186. Çan MK, Laakso I, Nieminen JO, Murakami T, Ugawa Y. Coil model comparison for cerebellar transcranial magnetic stimulation. Biomedical Physics & Engineering Express. 2018;5(1).

  187. Fecchio M, Pigorini A, Comanducci A, Sarasso S, Casarotto S, Premoli I, et al. The spectral features of EEG responses to transcranial magnetic stimulation of the primary motor cortex depend on the amplitude of the motor evoked potentials. PLoS One. 2017;12(9):e0184910.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  188. Kahkonen S, Komssi S, Wilenius J, Ilmoniemi RJ. Prefrontal TMS produces smaller EEG responses than motor-cortex TMS: implications for rTMS treatment in depression. Psychopharmacology. 2005;181(1):16–20.

    Article  PubMed  CAS  Google Scholar 

  189. Lachaux JP, Rodriguez E, Martinerie J, Varela F. Measuring phase synchrony in brain signals. Hum Brain Mapp. 1999;8(4):194–208.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  190. Chen SH, Desmond JE. Cerebrocerebellar networks during articulatory rehearsal and verbal working memory tasks. Neuroimage. 2005;24(2):332–8.

    Article  PubMed  Google Scholar 

  191. Hautzel H, Mottaghy FM, Specht K, Muller HW, Krause BJ. Evidence of a modality-dependent role of the cerebellum in working memory? An fMRI study comparing verbal and abstract n-back tasks. Neuroimage. 2009;47(4):2073–82.

    Article  PubMed  Google Scholar 

  192. Doyon J, Song AW, Karni A, Lalonde F, Adams MM, Ungerleider LG. Experience-dependent changes in cerebellar contributions to motor sequence learning. Proc Natl Acad Sci U S A. 2002;99(2):1017–22.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  193. Penhune VB, Doyon J. Cerebellum and M1 interaction during early learning of timed motor sequences. Neuroimage. 2005;26(3):801–12.

    Article  CAS  PubMed  Google Scholar 

  194. Chagnac-Amitai Y, Connors BW. Horizontal spread of synchronized activity in neocortex and its control by GABA-mediated inhibition. J Neurophysiol. 1989;61(4):747–58.

    Article  CAS  PubMed  Google Scholar 

  195. Gonzalez-Burgos G, Lewis DA. GABA neurons and the mechanisms of network oscillations: implications for understanding cortical dysfunction in schizophrenia. Schizophr Bull. 2008;34(5):944–61.

    Article  PubMed  PubMed Central  Google Scholar 

  196. Mann EO, Paulsen O. Role of GABAergic inhibition in hippocampal network oscillations. Trends Neurosci. 2007;30(7):343–9.

    Article  CAS  PubMed  Google Scholar 

  197. Whittington MA, Traub RD, Jeffereys JGR. Synchronized oscillations in interneuron networks driven by metabotropic glutamate receptor activation. Nature. 1995;373:612–5.

    Article  CAS  PubMed  Google Scholar 

  198. Van Mier HI, Perlmutter JS, Petersen SE. Functional changes in brain activity during acquisition and practise of movement sequences. Mot Control. 2004;8(4):500–20.

    Article  Google Scholar 

  199. Deng ZD, Lisanby SH, Peterchev AV. Electric field depth-focality tradeoff in transcranial magnetic stimulation: simulation comparison of 50 coil designs. Brain Stimul. 2013;6(1):1–13.

    Article  PubMed  Google Scholar 

  200. Fisher KM, Lai HM, Baker MR, Baker SN. Corticospinal activation confounds cerebellar effects of posterior fossa stimuli. Clin Neurophysiol. 2009;120(12):2109–13.

    Article  PubMed  PubMed Central  Google Scholar 

  201. Schutter DJLG, Van Honk J, D’Alfonso AAL, Peper JS, Panksepp J. High frequency repetitive transcranial magnetic over the medial cerebellum induces a shift in the prefrontal electroencephalography gamma spectrum: a pilot study in humans. Neurosci Lett. 2003;336(2):73–6.

    Article  CAS  PubMed  Google Scholar 

  202. Muller MM, Keil A, Gruber T, Elbert T. Processing of affective pictures modulates right-hemispheric gamma band EEG activity. Clin Neurophysiol. 1999;110:1913–20.

    Article  CAS  PubMed  Google Scholar 

  203. Kopeček M, Brunovský M, Novák T, Tišlerová B, Horáček J, Höschl C. The effect of cerebellar repetitive transcranial magnetic stimulation on electrical brain activity detected by low resolution electromagnetic tomography. Psychiatrie. 2006;10(SUPPL. 3):54–8.

    Google Scholar 

  204. Middleton FA, Strick PL. Cerebellar projections to the prefrontal cortex of the primate. J Neurosci. 2001;21(2):700–12.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  205. Hampshire A, Chamberlain SR, Monti MM, Duncan J, Owen AM. The role of the right inferior frontal gyrus: inhibition and attentional control. Neuroimage. 2010;50(3):1313–9.

    Article  PubMed  Google Scholar 

  206. Behrmann M, Geng JJ, Shomstein S. Parietal cortex and attention. Curr Opin Neurobiol. 2004;14:212–7.

    Article  CAS  PubMed  Google Scholar 

  207. Doyon J, Benali H. Reorganization and plasticity in the adult brain during learning of motor skills. Curr Opin Neurobiol. 2005;15(2):161–7.

    Article  CAS  PubMed  Google Scholar 

  208. Bellebaum C, Daum I. Mechanisms of cerebellar involvement in associative learning. Cortex. 2011;47(1):128–36.

    Article  PubMed  Google Scholar 

  209. Parker KL, Narayanan NS, Andreasen NC. The therapeutic potential of the cerebellum in schizophrenia. Front Syst Neurosci. 2014;8:163.

    Article  PubMed  PubMed Central  Google Scholar 

  210. Andela CD, van der Werff SJ, Pannekoek JN, van den Berg SM, Meijer OC, van Buchem MA, et al. Smaller grey matter volumes in the anterior cingulate cortex and greater cerebellar volumes in patients with long-term remission of Cushing’s disease: a case-control study. Eur J Endocrinol. 2013;169(6):811–9.

    Article  CAS  PubMed  Google Scholar 

  211. du Boisgueheneuc F, Levy R, Volle E, Seassau M, Duffau H, Kinkingnehun S, et al. Functions of the left superior frontal gyrus in humans: a lesion study. Brain. 2006;129(Pt 12):3315–28.

    Article  PubMed  Google Scholar 

  212. Pastor MA, Thut G, Pascual-Leone A. Modulation of steady-state auditory evoked potentials by cerebellar rTMS. Exp Brain Res. 2006;175(4):702–9.

    Article  PubMed  Google Scholar 

  213. Ross B, Borgmann C, Draganova R, Roberts LE, Pantev C. A high-precision magnetoencephalographic study of human auditory steady-state responses to amplitude-modulated tones. J Acoust Soc Am. 2000;108:679–91.

    Article  CAS  PubMed  Google Scholar 

  214. Simpson MI, Hadjipapas A, Barnes GR, Furlong PL, Witton C. Imaging the dynamics of the auditory steady-state evoked response. Neurosci Lett. 2005;385(3):195–7.

    Article  CAS  PubMed  Google Scholar 

  215. Pastor MA, Artieda J, Marti-Climent JM, Penuelas I, Masdeu JC. Activation of human cerebral and cerebellar cortex by auditory stimulation at 40 Hz. J Neurosci. 2002;22(23):10501–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  216. Brodal P. Principles of organization of the corticopontocerebellar projection to crus II in the cat with particular reference to the parietal cortical areas. Neuroscience. 1983;10(3):621–38.

    Article  CAS  PubMed  Google Scholar 

  217. Petrichella S, Johnson N, He B. The influence of corticospinal activity on TMS-evoked activity and connectivity in healthy subjects: a TMS-EEG study. PLoS One. 2017;12(4):e0174879.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  218. Bonnard M, Chen S, Gaychet J, Carrere M, Woodman M, Giusiano B, et al. Resting state brain dynamics and its transients: a combined TMS-EEG study. Sci Rep. 2016;6:31220.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  219. Andersen RA, Snyder LH, Bradley DC, Xing J. Multimodal representation of space in the posterior parietal cortex and its use in planning movements. Annu Rev Neurosci. 1997;20:303–30.

    Article  CAS  PubMed  Google Scholar 

  220. Lehmann D, Skrandies W. Reference-free identification of components of checkerboard-evoked multichannel potential fields. Electroencephalogr Clin Neurophysiol. 1980;48:609–21.

    Article  CAS  PubMed  Google Scholar 

  221. Esser SK, Huber R, Massimini M, Peterson MJ, Ferrarelli F, Tononi G. A direct demonstration of cortical LTP in humans: a combined TMS/EEG study. Brain Res Bull. 2006;69(1):86–94.

    Article  CAS  PubMed  Google Scholar 

  222. D'Angelo E, Casali S. Seeking a unified framework for cerebellar function and dysfunction: from circuit operations to cognition. Front Neural Circuits. 2012;6:116.

    PubMed  Google Scholar 

  223. Premoli I, Castellanos N, Rivolta D, Belardinelli P, Bajo R, Zipser C, et al. TMS-EEG signatures of GABAergic neurotransmission in the human cortex. J Neurosci. 2014;34(16):5603–12.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  224. Premoli I, Rivolta D, Espenhahn S, Castellanos N, Belardinelli P, Ziemann U, et al. Characterization of GABAB-receptor mediated neurotransmission in the human cortex by paired-pulse TMS-EEG. Neuroimage. 2014;103:152–62.

    Article  CAS  PubMed  Google Scholar 

  225. Bonnard M, Spieser L, Meziane HB, de Graaf JB, Pailhous J. Prior intention can locally tune inhibitory processes in the primary motor cortex: direct evidence from combined TMS-EEG. Eur J Neurosci. 2009;30(5):913–23.

    Article  CAS  PubMed  Google Scholar 

  226. Bikmullina R, Kicic D, Carlson S, Nikulin VV. Electrophysiological correlates of short-latency afferent inhibition: a combined EEG and TMS study. Exp Brain Res. 2009;194(4):517–26.

    Article  PubMed  Google Scholar 

  227. Farzan F, Barr MS, Hoppenbrouwers SS, Fitzgerald PB, Chen R, Pascual-Leone A, et al. The EEG correlates of the TMS-induced EMG silent period in humans. Neuroimage. 2013;83:120–34.

    Article  PubMed  Google Scholar 

  228. Kimiskidis VK, Papagiannopoulos S, Kazis DA, Vasiliadis G, Oikonomidi A, Sotirakoglou K, et al. Silent period (SP) to transcranial magnetic stimulation: the EEG substrate. Brain Stimulation. 2008;1(3):315–6.

    Article  Google Scholar 

  229. Daskalakis ZJ, Paradiso GO, Christensen BK, Fitzgerald PB, Gunraj C, Chen R. Exploring the connectivity between the cerebellum and motor cortex in humans. J Physiol. 2004;557(Pt 2):689–700.

    Article  CAS  PubMed  Google Scholar 

  230. Kultas-Ilinsky K, Ribak CE, Peterson GM, Oertel WH. A description of the GABAergic neurons and axon terminals in the motor nuclei of the cat thalamus. J Neurosci. 1985;5(5):1346–69.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  231. Bosch-Bouju C, Hyland BI, Parr-Brownlie LC. Motor thalamus integration of cortical, cerebellar and basal ganglia information: implications for normal and parkinsonian conditions. Front Comput Neurosci. 2013;7:163.

    Article  PubMed  PubMed Central  Google Scholar 

  232. Kuramoto E, Furuta T, Nakamura KC, Unzai T, Hioki H, Kaneko T. Two types of thalamocortical projections from the motor thalamic nuclei of the rat: a single neuron-tracing study using viral vectors. Cereb Cortex. 2009;19(9):2065–77.

    Article  PubMed  Google Scholar 

  233. Gerschlager W, Christensen LOD, Bestmann S, Rothwell JC. rTMS over the cerebellum can increase corticospinal excitability through a spinal mechanism involving activation of peripheral nerve fibres. Clin Neurophysiol. 2002;113:1435–40.

    Article  CAS  PubMed  Google Scholar 

  234. Jabbur SJ, Towe AL. Analysis of the antidromic cortical response following stimulation at the medullary pyramids. J Physiol. 1961;155:148–60.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  235. Porter R, Sanderson JH. Antidromic cortical response to pyramidal-tract stimulation in the rat. J Physiol. 1964;170:355–70.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  236. Yin S, Liu Y, Ding M. Amplitude of sensorimotor mu rhythm is correlated with BOLD from multiple brain regions: a simultaneous EEG-fMRI study. Front Hum Neurosci. 2016;10:364.

    Article  PubMed  PubMed Central  Google Scholar 

  237. Torriero S, Oliveri M, Koch G, Lo Gerfo E, Salerno S, Ferlazzo F, et al. Changes in cerebello-motor connectivity during procedural learning by actual execution and observation. J Cogn Neurosci. 2010;23(2):338–48.

    Article  PubMed  Google Scholar 

  238. Veniero D, Ponzo V, Koch G. Paired associative stimulation enforces the communication between interconnected areas. J Neurosci. 2013;33(34):13773–83.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  239. McIntosh AR, Vakorin V, Kovacevic N, Wang H, Diaconescu A, Protzner AB. Spatiotemporal dependency of age-related changes in brain signal variability. Cereb Cortex. 2014;24(7):1806–17.

    Article  CAS  PubMed  Google Scholar 

  240. Sheehan TC, Sreekumar V, Inati SK, Zaghloul KA. Signal complexity of human intracranial EEG tracks successful associative-memory formation across individuals. J Neurosci. 2018;38(7):1744–55.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  241. Bassett DS, Nelson BG, Mueller BA, Camchong J, Lim KO. Altered resting state complexity in schizophrenia. Neuroimage. 2012;59(3):2196–207.

    Article  PubMed  Google Scholar 

  242. McIntosh AR, Kovacevic N, Itier RJ. Increased brain signal variability accompanies lower behavioral variability in development. PLoS Comput Biol. 2008;4(7):e1000106.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  243. Costa M, Goldberger AL, Peng CK. Multiscale entropy analysis of biological signals. Phys Rev E Stat Nonlinear Soft Matter Phys. 2005;71(2 Pt 1):021906.

    Article  CAS  Google Scholar 

  244. O’Reilly JX, Mesulam MM, Nobre AC. The cerebellum predicts the timing of perceptual events. J Neurosci. 2008;28(9):2252–60.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  245. Traub RD, Whittington MA, Stanford IM, Jeffereys JGR. A mechanism for generation of long-range synchronour fast oscillations in the cortex. Nature. 1996;383:621–4.

    Article  CAS  PubMed  Google Scholar 

  246. Timofeev I, Steriade M. Fast (mainly 30-100Hz) oscillations in the cat cerebellothalamic pathway and their synchonization with cortical potentials. J Physiol. 1997;504(1):153–68.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  247. Canolty RT, Edwards E, Dalal SS, Soltani M, Nagarajan SS, Kirsch HE, et al. High gamma power is phase-locked to theta oscillations in the human neocortex. Science. 2006;313:1626–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  248. Ptak R. The frontoparietal attention network of the human brain: action, saliency, and a priority map of the environment. Neuroscientist. 2012;18(5):502–15.

    Article  PubMed  Google Scholar 

  249. Polich J. Updating P300: an integrative theory of P3a and P3b. Clin Neurophysiol. 2007;118(10):2128–48.

    Article  PubMed  PubMed Central  Google Scholar 

  250. Friedman D, Cycowicz YM, Gaeta H. The novelty P3: an event-related brain potential (ERP) sign of the brain’s evaluation of novelty. Neurosci Biobehav Rev. 2001;25(4):355–73.

    Article  CAS  PubMed  Google Scholar 

  251. Ravizza SM, Ivry RB. Comparison of the basal ganglia and cerebellum in shifting attention. J Cogn Neurosci. 2001;13(3):285–97.

    Article  CAS  PubMed  Google Scholar 

  252. Bortoletto M, Pellicciari MC, Rodella C, Miniussi C. The interaction with task-induced activity is more important than polarization: a tDCS study. Brain Stimul. 2015;8(2):269–76.

    Article  PubMed  Google Scholar 

  253. Fonteneau C, Mondino M, Arns M, Baeken C, Bikson M, Brunoni AR, et al. Sham tDCS: a hidden source of variability? Reflections for further blinded, controlled trials. Brain Stimul. 2019;12(3):668–73.

    Article  PubMed  Google Scholar 

Download references

Funding

PGE is funded by a Future Fellowship from the Australian Research Council (FT160100077). NCR is funded by a Discovery Early Career Research Award (DECRA) from the Australian Research Council.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lara Fernandez.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fernandez, L., Rogasch, N.C., Do, M. et al. Cerebral Cortical Activity Following Non-invasive Cerebellar Stimulation—a Systematic Review of Combined TMS and EEG Studies. Cerebellum 19, 309–335 (2020). https://doi.org/10.1007/s12311-019-01093-7

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12311-019-01093-7

Keywords

Navigation