Skip to main content
Log in

A memetic-based fuzzy support vector machine model and its application to license plate recognition

  • Regular Research Paper
  • Published:
Memetic Computing Aims and scope Submit manuscript

Abstract

In this paper, a novel fuzzy support vector machine (FSVM) coupled with a memetic particle swarm optimization (MPSO) algorithm is introduced. Its application to a license plate recognition problem is studied comprehensively. The proposed recognition model comprises linear FSVM classifiers which are used to locate a two-character window of the license plate. A new MPSO algorithm which consists of three layers i.e. a global optimization layer, a component optimization layer, and a local optimization layer is constructed. During the construction process, MPSO performs FSVM parameters tuning, feature selection, and training instance selection simultaneously. A total of 220 real Malaysian car plate images are used for evaluation. The experimental results indicate the effectiveness of the proposed model for undertaking license plate recognition problems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

References

  1. Anagnostopoulos CNE, Anagnostopoulos IE, Psoroulas ID, Loumos V, Kayafas E (2008) License plate recognition from still images and video sequences: a survey. Intell Transp Syst IEEE Trans 9(3):377–391

    Article  Google Scholar 

  2. Shan D, Ibrahim M, Shehata M, Badawy W (2013) Automatic license plate recognition (ALPR): a state-of-the-art review. Circ Syst Video Technol IEEE Trans 23(2):311–325

    Article  Google Scholar 

  3. BBC News Channel (2005) CCTV network tracks getaway car [cited 12 Feb 2015]. http://news.bbc.co.uk/2/hi/uk_news/england/bradford/4455918.stm

  4. Emirates 24|7 News Channel (2014) Dubai Police start to use Google Glass. [cited 12 Feb 2015]. http://www.emirates247.com/news/emirates/dubai-police-start-to-use-google-glass-2014-10-27-1.567748

  5. Kim K, Jung K, Kim J (2002) Color texture-based object detection: an application to license plate localization. In: Lee SW, Verri A (eds) Pattern recognition with support vector machines. Springer, Berlin, Heidelberg, pp 293–309

    Chapter  Google Scholar 

  6. Yao Z, Yi W (2014) License plate detection based on multistage information fusion. Inf Fusion 18:78–85

    Article  Google Scholar 

  7. Jin-Tsong J (2005) Hybrid approach of selecting hyperparameters of support vector machine for regression. Syst Man Cybern Part B Cybern IEEE Trans 36(3):699–709

    Article  Google Scholar 

  8. Steinwart I (2003) On the optimal parameter choice for v-support vector machines. Pattern Anal Mach Intell IEEE Trans 25(10):1274–1284

    Article  Google Scholar 

  9. Viola P, Jones M (2001) Rapid object detection using a boosted cascade of simple features. In: IEEE computer society conference on computer vision and pattern recognition, vol 1, pp 511–518

  10. Guo XC, Yang JH, Wu CG, Wang CY, Liang YC (2008) A novel LS-SVMs hyper-parameter selection based on particle swarm optimization. Neurocomputing 71(16):3211–3215

    Article  Google Scholar 

  11. Huang C-L, Dun J-F (2008) A distributed PSO-SVM hybrid system with feature selection and parameter optimization. Appl Soft Comput 8(4):1381–1391

    Article  Google Scholar 

  12. Lin C, Ying K, Chen S, Lee Z (2008) Particle swarm optimization for parameter determination and feature selection of support vector machines. Expert Syst Appl 35(4):1817–1824

    Article  Google Scholar 

  13. Sudheer C, Maheswaran R, Panigrahi B, Mathur S (2013) A hybrid SVM-PSO model for forecasting monthly streamflow. Neural Comput Appl 24(6):1381–1389

    Article  Google Scholar 

  14. Wang H, Zhao G, Li N (2012) Training support vector data descriptors using converging linear particle swarm optimization. Neural Comput Appl 21(6):1099–1105

    Article  Google Scholar 

  15. Batuwita R, Palade V (2010) FSVM-CIL: fuzzy support vector machines for class imbalance learning. Fuzzy Syst IEEE Trans 18(3):558–571

    Article  Google Scholar 

  16. Chun-Fu L, Sheng-De W (2002) Fuzzy support vector machines. Neural Netw IEEE Trans 13(2):464–471

    Article  Google Scholar 

  17. António C (2014) A memetic algorithm based on multiple learning procedures for global optimal design of composite structures. Memet Comput 6(2):113–131

    Article  Google Scholar 

  18. Raeesi NM, Kobti Z (2012) A memetic algorithm for job shop scheduling using a critical-path-based local search heuristic. Memet Comput 4(3):231–245

    Article  Google Scholar 

  19. Nekkaa M, Boughaci D (2015) A memetic algorithm with support vector machine for feature selection and classification. Memet Comput 7(1):59–73

    Article  Google Scholar 

  20. Ni J, Li L, Qiao F, Wu Q (2013) A novel memetic algorithm and its application to data clustering. Memet Comput 5(1):65–78

    Article  Google Scholar 

  21. Goldbarg M, Asconavieta P, Goldbarg E (2012) Memetic algorithm for the traveling car renter problem: an experimental investigation. Memet Comput 4(2):89–108

    Article  Google Scholar 

  22. Chia J, Goh C, Tan K, Shim V (2011) Memetic informed evolutionary optimization via data mining. Memet Comput 3(2):73–87

    Article  Google Scholar 

  23. Cortes C, Vapnik V (1995) Support-vector networks. Mach Learn 20(3):273–297

    MATH  Google Scholar 

  24. Sutton RS, Precup D, Singh S (1999) Between MDPs and semi-MDPs: a framework for temporal abstraction in reinforcement learning. Artif Intell 112(12):181–211

    Article  MathSciNet  MATH  Google Scholar 

  25. McPartland M, Gallagher M (2011) Reinforcement learning in first person shooter games. Comput Intell AI Games IEEE Trans 3(1):43–56

    Article  Google Scholar 

  26. Sharma R, Spaan MTJ (2012) Bayesian-game-based fuzzy reinforcement learning control for decentralized POMDPs. Comput Intell AI Games IEEE Trans 4(4):309–328

    Article  Google Scholar 

  27. Watkins CCH, Dayan P (1992) Q-learning. Mach Learn 8(3–4):279–292

    MATH  Google Scholar 

  28. Rakshit P, Konar A, Bhowmik P, Goswami I, Das S, Jain L, Nagar A (2013) Realization of an adaptive memetic algorithm using differential evolution and q-learning: a case study in multirobot path planning. Syst Man Cybern Syst IEEE Trans 43(4):814–831

    Article  Google Scholar 

  29. Kennedy J, Eberhart R (1995) Particle swarm optimization. In: IEEE International Conference on Neural Networks. Perth, WA

  30. Zhi-Hui Z, Jun Z, Yun L, Chung H (2009) Adaptive particle swarm optimization. Syst Man Cybern Part B Cybern IEEE Trans 39(6):1362–1381

    Article  Google Scholar 

  31. Lim WH, Mat Isa NA (2013) Two-layer particle swarm optimization with intelligent division of labor. Eng Appl Artif Intell 26(10):2327–2348

    Article  Google Scholar 

  32. Lim WH, Mat Isa NA (2014) Teaching and peer-learning particle swarm optimization. Appl Soft Comput 18:39–58

    Article  Google Scholar 

  33. Lim WH, Mat Isa NA (2014) Particle swarm optimization with increasing topology connectivity. Eng Appl Artif Intell 27:80–102

    Article  Google Scholar 

  34. Zhi-Hui Z, Jun Z, Yun L, Yu-hui S (2010) Orthogonal learning particle swarm optimization. Evol Comput IEEE Trans 15(6):832–847

    Google Scholar 

  35. Gao M, Hong X, Chen S, Harris C (2011) A combined SMOTE and PSO based RBF classifier for two-class imbalanced problems. Neurocomputing 74(17):3456–3466

    Article  Google Scholar 

  36. Xia H, Sheng C, Harris CJ (2007) A kernel-based two-class classifier for imbalanced data sets. Neural Netw IEEE Trans 18(1):28–41

    Article  Google Scholar 

  37. Caner H, Gecim HS, Alkar AZ (2008) Efficient embedded neural-network-based license plate recognition system. Veh Technol IEEE Trans 57(5):2675–2683

    Article  Google Scholar 

  38. Bo L, Bin T, Ye L, Ding W (2013) Component-based license plate detection using conditional random field model. Intell Transp Syst IEEE Trans 14(4):1690–1699

    Article  Google Scholar 

  39. Zhou W, Li H, Yijuan L, Qi T (2012) Principal visual word discovery for automatic license plate detection. Image Process IEEE Trans 21(9):4269–4279

    Article  MathSciNet  Google Scholar 

  40. Agarwal S, Awan A, Roth D (2004) Learning to detect objects in images via a sparse, part-based representation. Pattern Anal Mach Intell IEEE Trans 26(11):1475–1490

    Article  Google Scholar 

  41. Zhen J, Huilian L, Yiwei W, Wu Q (2007) A novel intelligent particle optimizer for global optimization of multimodal functions. In: IEEE congress on evolutionary computation. Singapore

  42. Pan Q-K, Fatih Tasgetiren M, Liang Y-C (2008) A discrete particle swarm optimization algorithm for the no-wait flowshop scheduling problem. Comput Oper Res 35(9):2807–2839

    Article  MathSciNet  MATH  Google Scholar 

  43. Wang C-H, Lin T-W (2011) Improved particle swarm optimization to minimize periodic preventive maintenance cost for series-parallel systems. Expert Syst Appl 38(7):8963–8969

    Article  Google Scholar 

  44. Bishop CM (1995) Neural networks for pattern recognition. Oxford University Press, Oxford Inc

    MATH  Google Scholar 

  45. Friedman N, Geiger D, Goldszmidt M (1997) Bayesian network classifiers. Mach Learn 29(2–3):131–163

    Article  MATH  Google Scholar 

  46. Aha D, Kibler D, Albert M (1991) Instance-based learning algorithms. Mach Learn 6(1):37–66

    Google Scholar 

  47. Han H-G, Qiao J-F (2013) A structure optimisation algorithm for feedforward neural network construction. Neurocomputing 99:347–357

    Article  Google Scholar 

  48. Efrorn B, Tibshirani RJ (1993) An introduction to the bootstrap. Chapman and Hall, London

    Book  Google Scholar 

  49. Efron B (1979) Bootstrap methods: another look at the jackknife. Ann Stat 7(1):1–26

    Article  MathSciNet  MATH  Google Scholar 

  50. Pham D, Ghanbarzadeh A, Koc E, Otri S, Rahim S, Zaidi M (2005) The bees algorithm. Technical note. Manufacturing Engineering Centre, Cardiff University, UK, pp 1–57

  51. Kim JH, Loganathan GV (2001) A new heuristic optimization algorithm: harmony search. Simulation 76(2):60–68

    Article  Google Scholar 

  52. Mirjalili S, Mirjalili S, Hatamlou A (2015) Multi-verse optimizer: a nature-inspired algorithm for global optimization. Neural Comput Appl 27(3):495–513

    Google Scholar 

  53. Mirjalili S, Mirjalili SM, Lewis A (2014) Grey wolf optimizer. Adv Eng Softw 69:46–61

    Article  Google Scholar 

  54. Hiromoto M, Sugano H, Miyamoto R (2009) Partially parallel architecture for adaboost-based detection with haar-like features. Circ Syst Video Technol IEEE Trans 19(1):41–52

    Article  Google Scholar 

  55. Wang Q, Yan P, Yuan Y, Li X (2013) Multi-spectral saliency detection. Pattern Recognit Lett 34(1):34–41

    Article  Google Scholar 

  56. Naqvi S, Browne WN, Hollitt C (2016) Salient object detection via spectral matting. Pattern Recognit 51:209–224

    Article  Google Scholar 

  57. Chen S, Liu C (2015) Eye detection using discriminatory Haar features and a new efficient SVM. Image Vis Comput 33:68–77

    Article  Google Scholar 

  58. Park K-Y, Hwang S-Y (2014) An improved Haar-like feature for efficient object detection. Pattern Recognit Lett 42:148–153

    Article  Google Scholar 

  59. Vural S, Mae Y, Uvet H, Arai T (2012) Multi-view fast object detection by using extended haar filters in uncontrolled environments. Pattern Recognit Lett 33(2):126–133

    Article  Google Scholar 

  60. Yan J, Li J, Gao X (2011) Chinese text location under complex background using Gabor filter and SVM. Neurocomputing 74(17):2998–3008

    Article  Google Scholar 

  61. Paisitkriangkrai S, Chunhua S, Zhang J (2008) Fast pedestrian detection using a cascade of boosted covariance features. Circ Syst Video Technol IEEE Trans 18(8):1140–1151

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chee Peng Lim.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Samma, H., Lim, C.P., Saleh, J.M. et al. A memetic-based fuzzy support vector machine model and its application to license plate recognition. Memetic Comp. 8, 235–251 (2016). https://doi.org/10.1007/s12293-016-0187-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12293-016-0187-0

Keywords

Navigation