Skip to main content
Log in

Study on springback from thermal-mechanical boundary condition imposed to V-bending and L-bending processes coupled with infrared rays local heating

  • SI: Modeling Materials and Processes, in Memory of Professor José J. Grácio
  • Published:
International Journal of Material Forming Aims and scope Submit manuscript

Abstract

This paper shows differences of thermal-mechanical boundary condition and springback between V-bending and L-bending processes. Although a recently conducted study showed that an infrared (IR) local heating method substantially reduces springback of dual-phase (DP) 980 steel sheet in V-bending, its application to L-bending, which is one of widely used forming processes in industrial applications, has not been sufficiently reported. In the L-bending experiment conducted in this work, springback does not sufficiently decrease as much as it does in the V-bending test, even though the sheet is deformed under the same temperature condition. For analysis of the difference in springback, thermo-elastic-plastic simulation for both V-bending and L-bending processes were conducted. The numerical analysis shows that the V-bending and L-banding processes have significantly different thermal and mechanical boundary conditions even though both processes go through a bending deformation. The differences in the boundary conditions have a strong effect on the thermal-mechanical behavior of the blank, so that the springback results are different between the two bending processes. Finally, it is also shown that the L-bending process requires a higher temperature condition than the V-bending process in order to sufficiently reduce springback.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18

Similar content being viewed by others

References

  1. Georgiadis G, Tekkaya AE, Weigert P, Horneber S, Kuhnle PA (2016) Formability analysis of thin press hardening steel sheets under isothermal and non-isothermal conditions. Int J Mater Form 10(3):405-419

  2. Omer K, George R, Bardelcik A, Worswick M, Malcolm S, Detwiler D (2017) Development of a hot stamped channel section with axially tailored properties–experiments and models. Int J Mater Form DOI:10.1007/s12289-017-1338-7.

  3. Merklein M, Lechler J (2006) Investigation of the thermo-mechanical properties of hot stamping steels. J Mater Process Technol 177:452–455. https://10.1007/s12289-017-1338-7

  4. Kolleck R, Veit R, Merklein M, Lechler J, Geiger M (2009) Investigation on induction heating for hot stamping of boron alloyed steels. CIRP Ann Manuf Technol 58(1):275–278

    Article  Google Scholar 

  5. Karbasian H, Tekkaya AE (2010) A review on hot stamping. J Mater Process Technol 210(15):2103–2118

    Article  Google Scholar 

  6. Mori K, Maeno T, Mongkolkaji K (2013) Tailored die quenching of steel parts having strength distribution using bypass resistance heating in hot stamping. J Mater Process Technol 213(3):508–514

    Article  Google Scholar 

  7. Turetta A, Bruschi S, Ghiotti A (2006) Investigation of 22MnB5 formability in hot stamping operations. J Mater Process Technol 177(1–3):396–400

    Article  Google Scholar 

  8. Mori K, Maki S, Tanaka Y (2005) Warm and hot stamping of ultra high tensile strength steel sheets using resistance heating. CIRP Ann Manuf Technol 54(1):209–212

    Article  Google Scholar 

  9. Yanagimoto J, Oyamada K (2005) Springback of High-Strength Steel after Hot and Warm Sheet Formings. CIRP Ann Manuf Technol 54(1):213–216

    Article  Google Scholar 

  10. Yanagimoto J, Oyamada K (2007) Mechanism of Springback-Free Bending of High-Strength Steel Sheets under Warm Forming Conditions. CIRP Ann Manuf Technol 56(1):265–268

    Article  Google Scholar 

  11. Mohammad RB, Mahdi M (2011) Springback Investigation at Warm V- bending Conditions by Numerical and Experimental Methods, In: Proceedings of conference on Trends in Mech Indust Eng, Bangkok, Thailand, 185-190

  12. Neugebauer R, Scheffler S, Poprawe R, Weisheit A (2009) A Local laser heat treatment of ultra high strength steels to improve formability. Prod Eng 3:347–351

    Article  Google Scholar 

  13. Romero P, Otero N, Cabrera JM, Masagué D (2010) Laser Assisted Conical Spin Forming of Dual Phase Automotive Steel. Experimental demonstration of Work Hardening Reduction and Forming Limit Extension. Phys Proced 5(B):215–225

    Article  Google Scholar 

  14. Park JC, Seong DY, Yang DY, Cha MH (2011) Development of an Innovative Bending Process Employing Synchronous Incremental Heating and Incremental forming, steel research international, special ed:325-330

  15. Lee EH, Hwang JS, Lee CW, Yang DY, Yang WH (2014) A local heating method by near-infrared rays for forming of non-quenchable advanced high-strength steels. J Mater Process Technol 214(4):784–793

    Article  Google Scholar 

  16. Lee EH, Yang DY, Yoon JW, Yang WH (2015) Numerical modeling and analysis for forming process of dual-phase 980 steel exposed to infrared local heating. Int J Solids Struct 75–76:211–224

    Article  Google Scholar 

  17. Lee EH, Yang DY, Yoon JW, Yang WH (2017) A manufacturing process using the infrared ray local heating method for seat cross members. Int J Adv Manuf Tech 89:3299–3305

    Article  Google Scholar 

  18. Lee EH, Yang DY, Yang WH (2014) Numerical modeling and experimental validation of focused surface heating using near-infrared rays with an elliptical reflector. Int J Heat Mass Transfer 78:240–250

  19. Lee EH, Yang DY (2018) Design and analysis of infrared heating with overlapping heater array scheme for industrial application. Heat transfer Eng., (Accepted, scheduled for publication in Volume 39, Issue 15, 2018)

  20. Shapiro AB (2009) Using LS-Dyna for hot stamping. in: Seventh European LS-Dyna Conference

  21. Geiger M, Merklein M, Lechler J (2008) Determination of tribological conditions within hot stamping. Prod Eng 2(3):269–276

    Article  Google Scholar 

  22. Bosetti P, Bruschi S, Stoehr T, Lechler J, Merklein M (2010) Interlaboratory comparison for heat transfer coefficient identification in hot stamping of high strength steels. Int J Mater Form 3(1):817–820

    Article  Google Scholar 

  23. Merklein M, Lechler J, Stoehr T (2009) Investigations on the thermal behavior of ultra high strength boron manganese steels within hot stamping. Int J Mater Form 2(1):259–262

    Article  Google Scholar 

  24. Incropera F, Dewitt D (2002) Introduction to heat transfer, 4th edn. Wiley, New York

    Google Scholar 

  25. Huang YM, Leu DK (1998) Effects of process variables on V-die bending process of steel sheet. Int J Mech Sci 40(7):631–650

    Article  MATH  Google Scholar 

  26. Ramezani M, Ripin ZM, Ahmad R (2010) Modelling of kinetic friction in V-bending of ultra-high-strength steel sheets. Int J Adv Manuf Tech 46:101–110

    Article  Google Scholar 

  27. Ivanišević A, Milutinović M, Štrbac B, Skakun P (2013) Stress state and springback in V-bending operations. J Tech Plasticity 39(2):157–167

    Google Scholar 

  28. Ishii Y, Takahashi S (2010) Research on Influence of Forming Conditions on Springback in V-bending Process of Aluminum Sheet Alloys. Proceedings of the 12th International Conference on Aluminium Alloys: September 5-9, 2010, Yokohama, p 2324-2329

  29. Lemu HG, Trzepieciński T (2013) Numerical and experimental study of frictional behavior in bending under tension test. J Mech Eng 59:41–49

    Article  Google Scholar 

  30. Escolán A, Bielsa JM, Hernández-Gascón B, Jiménez MA, López J, Allende R (2017) Thermo-mechanical fatigue approach to predict tooling life in high temperature metal forming processes. Int J Mater Form 10(4):535-545

  31. Krauer J, Hora P (2012) Enhanced material models for the process design of the temperature dependent forming behavior of metastable steels. Int J Mater Form 5(4):361–370

    Article  Google Scholar 

  32. Pourboghrat F, Chu E (1995) Springback in plane strain stretch/draw sheet forming. Int J Mech Sci 37(3):327–341

    Article  MATH  Google Scholar 

  33. Yoon JW, Yang DY, Chung K (1999) Elasto-plastic finite element method based on incremental deformation theory and continuum based shell elements for planar anisotropic sheet materials. Comput Methods Appl Mech Eng 174(1):23–56

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jeong Whan Yoon.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Appendix

Appendix

Stress integration

The incremental strain-stress relation in the thermal-mechanical deformation is given by

$$ d\boldsymbol{\sigma} =\boldsymbol{C}d{\boldsymbol{\varepsilon}}^e+d\boldsymbol{C}{\boldsymbol{\varepsilon}}^e $$
(A.1)

where d ε e = d ε − d ε th −  p and \( d\boldsymbol{C}=\left(\frac{d\boldsymbol{C}}{dT}\right) dT \).

d σ means the increment of stress, d ε is the increment of total strain, d ε e is the increment of elastic strain, d ε th is the increment of thermal strain. d ε p is the increment of plastic strain, and d C means the increment of mechanical modulus due to the temperature change, dT. In the numerical implementation, eq. (A.1) is accumulated in a step-wise manner as below:

$$ {\boldsymbol{\sigma}}_{n+1}={\boldsymbol{\sigma}}_n+d{\boldsymbol{\sigma}}_{n+1}={\boldsymbol{\sigma}}^T-\left(\boldsymbol{C}+d\boldsymbol{C}\right)d{\boldsymbol{\varepsilon}}_{n+1}^p $$
(A.2)

where \( {\boldsymbol{\sigma}}^T=\left[{\boldsymbol{\sigma}}_n+\boldsymbol{C}\left(d{\boldsymbol{\varepsilon}}_{n+1}-d{\boldsymbol{\varepsilon}}_{n+1}^{th}\right)+d\boldsymbol{C}\left({\boldsymbol{\varepsilon}}_{n+1}-{\boldsymbol{\varepsilon}}_{n+1}^{th}-{\boldsymbol{\varepsilon}}_n^p\right)\right] \).

σ T is the trial stress, and n is the step number. The increment of plastic strain (\( d{\boldsymbol{\varepsilon}}_{n+\mathtt{1}}^p \)) is described in the associated rule, as below:

$$ d{\boldsymbol{\varepsilon}}_{\mathtt{n}+\mathtt{1}}^p={\left(\frac{\partial \overline{\sigma}}{\partial \boldsymbol{\sigma}}\right)}_{\mathtt{n}+\mathtt{1}}d{\overline{\varepsilon}}_{\mathtt{n}+\mathtt{1}}^{\mathtt{p}}\left(={\hat{\boldsymbol{e}}}_{\mathtt{n}+\mathtt{1}}{\gamma}_{\mathtt{n}+\mathtt{1}}\right) $$
(A.3)

where \( \hat{\boldsymbol{e}}=\frac{\partial \overline{\sigma}}{\partial \boldsymbol{\sigma}},\kern0.5em {\gamma}_{\mathtt{n}+\mathtt{1}}=d{\overline{\varepsilon}}_{\mathtt{n}+\mathtt{1}}^{\mathtt{p}} \).

where \( \overline{\sigma} \) is the effective stress, and \( d{\overline{\varepsilon}}^{\mathtt{p}} \)is the increment of effective plastic strain in the associated rule. In order to determine the value of \( d{\overline{\varepsilon}}_{n+1}^p \), the following three functions (A.4A.6) are employed based on the procedure proposed by Yoon et al. [33]:

$$ {g}_1\left({\gamma}_{\mathtt{n}+\mathtt{1}}\right)=\overline{\sigma}\left({\boldsymbol{\sigma}}_{n+1}\right)-{\rho}_{n+1}\left({\overline{\varepsilon}}_{\mathtt{n}}^p+{\gamma}_{n+1}\right)=0 $$
(A.4)
$$ {\boldsymbol{g}}_2\left({\gamma}_{n+1}\right)={\boldsymbol{\sigma}}_{n+1}-{\boldsymbol{\sigma}}^T+\left(\boldsymbol{C}+d\boldsymbol{C}\right){\hat{\boldsymbol{e}}}_{n+1}{\gamma}_{n+1}=0 $$
(A.5)
$$ {g}_3\left({\gamma}_{n+1}\right)=\left({\rho}_{n+1}-{\rho}_n\right){\mathtt{H}}^{-1}-{\gamma}_{n+1}=0 $$
(A.6)

where ρ is the yield stress, and H is the discrete slope in the work-hardening curve. Since above functions (A.4A.6) are nonlinear equations, a linearization process is needed for them. After the linearization, the following relationship is obtained:

$$ d{\gamma}_{n+1}^i=\frac{g_1\left({\gamma}_{\mathtt{n}+\mathtt{1}}^{\mathtt{i}}\right)-{\widehat{\boldsymbol{e}}}_{n+1}^i{\left({\boldsymbol{E}}_{n+1}^i\right)}^{-1}{\boldsymbol{g}}_{\boldsymbol{2}}\left({\gamma}_{\mathtt{n}+\mathtt{1}}^{\mathtt{i}}\right)+{g}_3\left({\gamma}_{\mathtt{n}+\mathtt{1}}^{\mathtt{i}}\right)H}{H+{\widehat{\boldsymbol{e}}}_{\mathtt{n}+\mathtt{1}}^i{\left({\boldsymbol{E}}_{n+1}^i\right)}^{-1}{\widehat{\boldsymbol{e}}}_{n+1}^i+{\widehat{\boldsymbol{e}}}_{n+1}^i{\left({\boldsymbol{E}}_{n+1}^i\right)}^{-1}{\boldsymbol{C}}^{-1}d\boldsymbol{C}{\widehat{\boldsymbol{e}}}_{n+1}^i} $$
(A.7)

where \( {\boldsymbol{E}}_{n+1}^i=\left[{\boldsymbol{C}}^{-1}+{\left(\frac{\partial \hat{\boldsymbol{e}}}{\partial \boldsymbol{\sigma}}\right)}_{n+1}^i{\gamma}_{n+1}^i+{\boldsymbol{C}}^{-1}d\boldsymbol{C}{\gamma}_{n+1}^i{\left(\frac{\partial \hat{\boldsymbol{e}}}{\partial \boldsymbol{\sigma}}\right)}_{n+1}^i\right] \),

where i is the iteration number. Then, \( d{\overline{\varepsilon}}_{n+1}^p \) is given by:

$$ d{\overline{\varepsilon}}_{n+1}^p=\sum d{\gamma}_{n+1}^i $$
(A.8)

\( d{\boldsymbol{\varepsilon}}_{n+1}^p \) can be obtained by substituting eq. (A.8) into eq. (A.3), then, the stress (σ n + 1) is obtained by substituting eq. (A.3) into eq. (A.2).

Consistent tangent modulus

Taking the consistency condition of eq. (A.4) leads to

$$ \hat{\boldsymbol{e}}\cdot d\boldsymbol{\sigma} -{h}^{\hbox{'}} d\gamma =0 $$
(A.9)

where h (\( \equiv \frac{\boldsymbol{d}\boldsymbol{\rho }}{\boldsymbol{d}\boldsymbol{\gamma }} \)) means the instantaneous slope. The following relation (A.10) is needed to get the consistent tangent modulus.

$$ d\boldsymbol{\sigma} =\left[{\boldsymbol{C}}^{-1}+\gamma \frac{\partial \hat{\boldsymbol{e}}}{\partial \boldsymbol{\sigma}}+\left({\boldsymbol{C}}^{-1}d\boldsymbol{C}\right)\gamma \frac{\partial \hat{\boldsymbol{e}}}{\partial \boldsymbol{\sigma}}\right]\left[d\boldsymbol{\varepsilon} - d\gamma \hat{\boldsymbol{e}}+\left({\boldsymbol{C}}^{-1}d\boldsymbol{C}\right)d\boldsymbol{\varepsilon} -\left({\boldsymbol{C}}^{-1}d\boldsymbol{C}\right) d\gamma \hat{\boldsymbol{e}}\right] $$
(A.10)

Substituting eq. (A.10) into eq. (A.9) provides below equation:

$$ d\gamma =\frac{\hat{\boldsymbol{e}}\overline{\boldsymbol{C}}d\boldsymbol{\varepsilon} +\hat{\boldsymbol{e}}\overline{\boldsymbol{C}}\left({\boldsymbol{C}}^{-1}\right)d\boldsymbol{C}d\boldsymbol{\varepsilon}}{h^{\hbox{'}}+\hat{\boldsymbol{e}}\overline{\boldsymbol{C}}\hat{\boldsymbol{e}}+\hat{\boldsymbol{e}}\overline{\boldsymbol{C}}\left({\boldsymbol{C}}^{-1}\right)d\boldsymbol{C}\hat{\boldsymbol{e}}} $$
(A.11)

Then, the consistent tangent modulus (\( {\boldsymbol{C}}^{\mathtt{alg}} \)) can be derived from substituting eq. (A.11) into eq. (A.10):

$$ {\boldsymbol{C}}^{a\lg }=\left[\overline{\boldsymbol{C}}\left(\boldsymbol{I}+{\boldsymbol{C}}^{-\boldsymbol{1}}d\boldsymbol{C}\right)-\frac{\left[\overline{\boldsymbol{C}}\widehat{\boldsymbol{e}}+\overline{\boldsymbol{C}}\left({\boldsymbol{C}}^{-\boldsymbol{1}}\right)\boldsymbol{d}C\widehat{e}\right]\otimes \left[\overline{\boldsymbol{C}}\widehat{\boldsymbol{e}}+\overline{\boldsymbol{C}}\left({\boldsymbol{C}}^{-\boldsymbol{1}}\right)d\boldsymbol{C}\widehat{\boldsymbol{e}}\right]}{h^{\boldsymbol{\hbox{'}}}+\widehat{\boldsymbol{e}}\overline{\boldsymbol{C}}\widehat{\boldsymbol{e}}+\widehat{\boldsymbol{e}}\overline{\boldsymbol{C}}\left({\boldsymbol{C}}^{-\boldsymbol{1}}\right)d\boldsymbol{C}\widehat{\boldsymbol{e}}}\right] $$
(A.12)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lee, EH., Yoon, J.W. & Yang, DY. Study on springback from thermal-mechanical boundary condition imposed to V-bending and L-bending processes coupled with infrared rays local heating. Int J Mater Form 11, 417–433 (2018). https://doi.org/10.1007/s12289-017-1375-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12289-017-1375-2

Keywords

Navigation