Skip to main content
Log in

Biocompatibility of boron nitride nanosheets

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

The properties and applications of boron nitride (BN) nanosheets are complementary to those of graphene, with advantages in chemical and thermal stability. Biocompatibility is an important property for future biomedical applications but has not been investigated experimentally. We studied the biocompatibility of BN nanosheets of different sizes and compared it with that of BN nanoparticles in osteoblast-like cells (SaOS2). Our results showed that the biocompatibility of BN nanomaterials depends on their size, shape, structure, and surface chemical properties. Electron spin resonance measurement revealed that unsaturated B atoms located at the nanosheet edges or on the particle surface are responsible for the cell death.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Liu, Z.; Cai, W. B.; He, L.; Nakayama, N.; Chen, K.; Sun, X. M.; Chen, X. Y.; Dai, H. J. In vivo biodistribution and highly efficient tumour targeting of carbon nanotubes in mice. Nat. Nanotechnol. 2007, 2, 47–52.

    Article  Google Scholar 

  2. Liu, Z.; Tabakman, S.; Welsher, K.; Dai, H. J. Carbon nanotubes in biology and medicine: In vitro and in vivo detection, imaging and drug delivery. Nano Res. 2009, 2, 85–120.

    Article  Google Scholar 

  3. Kuila, T.; Bose, S.; Mishra, A. K.; Khanra, P.; Kim, N. H.; Lee, J. H. Chemical functionalization of graphene and its applications. Prog. Mater. Sci. 2012, 57, 1061–1105.

    Article  Google Scholar 

  4. Bai, H.; Li, C.; Shi, G. Q. Functional composite materials based on chemically converted graphene. Adv. Mater. 2011, 23, 1089–1115.

    Article  Google Scholar 

  5. Yang, K.; Zhang, S.; Zhang, G. X.; Sun, X. M.; Lee, S. T.; Liu, Z. Graphene in mice: Ultrahigh in vivo tumor uptake and efficient photothermal therapy. Nano Lett. 2010, 10, 3318–3323.

    Article  Google Scholar 

  6. Liu, S. B.; Zeng, T. H.; Hofmann, M.; Burcombe, E.; Wei, J.; Jiang, R. R.; Kong, J.; Chen, Y. Antibacterial activity of graphite, graphite oxide, graphene oxide, and reduced graphene oxide: Membrane and oxidative stress. ACS Nano 2011, 5, 6971–6980.

    Article  Google Scholar 

  7. Pinto, A. M.; Gonçalves, I. C.; Magalhães, F. D. Graphenebased materials biocompatibility: A review. Colloids Surf. B 2013, 111, 188–202.

    Article  Google Scholar 

  8. Tu, Y. S.; Lv, M.; Xiu, P.; Huynh, T.; Zhang, M.; Castelli, M.; Liu, Z. R.; Huang, Q.; Fan, C. H.; Fang, H. P. et al. Destructive extraction of phospholipids from Escherichia coli membranes by graphene nanosheets. Nat. Nanotechnol. 2013, 8, 594–601.

    Article  Google Scholar 

  9. Zhou, R. H.; Gao, H. J. Cytotoxicity of graphene: Recent advances and future perspective. Wiley Interdiscip. Rev.: Nanomed. Nanobiotechnol. 2014, 6, 452–474.

    Google Scholar 

  10. Sasidharan, A.; Panchakarla, L. S.; Chandran, P.; Menon, D.; Nair, S.; Rao, C. N. R.; Koyakutty, M. Differential nano-bio interactions and toxicity effects of pristine versus functionalized graphene. Nanoscale 2011, 3, 2461–2464.

    Article  Google Scholar 

  11. Zhu, C. F.; Zeng, Z. Y.; Li, H.; Li, F.; Fan, C. H.; Zhang, H. Single-layer MoS2-based nanoprobes for homogeneous detection of biomolecules. J. Am. Chem. Soc. 2013, 135, 5998–6001.

    Article  Google Scholar 

  12. Yang, X.; Li, J.; Liang, T.; Ma, C. Y.; Zhang, Y. Y.; Chen, H. Z.; Hanagata, N.; Su, H. X.; Xu, M. S. Antibacterial activity of two-dimensional MoS2 sheets. Nanoscale 2014, 6, 10126–10133.

    Article  Google Scholar 

  13. Huang, K. J.; Liu, Y. J.; Wang, H. B.; Gan, T.; Liu, Y. M.; Wang, L. L. Signal amplification for electrochemical DNA biosensor based on two-dimensional graphene analogue tungsten sulfide–graphene composites and gold nanoparticles. Sensor. Actuat. B-Chem. 2014, 191, 828–836.

    Article  Google Scholar 

  14. Huang, K. J.; Wang, L.; Liu, Y. J.; Gan, T.; Liu, Y. M.; Wang, L. L.; Fan, Y. Synthesis and electrochemical performances of layered tungsten sulfide-graphene nanocomposite as a sensing platform for catechol, resorcinol and hydroquinone. Electrochim. Acta 2013, 107, 379–387.

    Article  Google Scholar 

  15. Yuan, Y. X.; Li, R. Q.; Liu, Z. H. Establishing water-soluble layered WS2 nanosheet as a platform for biosensing. Anal. Chem. 2014, 86, 3610–3615.

    Article  Google Scholar 

  16. Liu, T.; Wang, C.; Gu, X.; Gong, H.; Cheng, L.; Shi, X. Z.; Feng, L. Z.; Sun, B. Q.; Liu, Z. Drug delivery with pegylated MoS2 nano-sheets for combined photothermal and chemotherapy of cancer. Adv. Mater. 2014, 26, 3433–3440.

    Article  Google Scholar 

  17. Cheng, L.; Liu, J. J.; Gu, X.; Gong, H.; Shi, X. Z.; Liu, T.; Wang, C.; Wang, X. Y.; Liu, G.; Xing, H. Y. et al. PEGylated WS2 nanosheets as a multifunctional theranostic agent for in vivo dual-modal CT/photoacoustic imaging guided photothermal therapy. Adv. Mater. 2014, 26, 1886–1893.

    Article  Google Scholar 

  18. Teo, W. Z.; Chng, E. L. K.; Sofer, Z.; Pumera, M. Cytotoxicity of exfoliated transition-metal dichalcogenides (MoS2, WS2, and WSe2) is lower than that of graphene and its analogues. Chem.—Eur. J. 2014, 20, 9627–9632.

    Article  Google Scholar 

  19. Pacilé, D.; Meyer, J. C.; Girit, Ç. Ö.; Zettl, A. The twodimensional phase of boron nitride: Few-atomic-layer sheets and suspended membranes. Appl. Phys. Lett. 2008, 92, 133107.

    Article  Google Scholar 

  20. Zhi, C. Y.; Bando, Y.; Tang, C. C.; Kuwahara, H.; Golberg, D. Large-scale fabrication of boron nitride nanosheets and their utilization in polymeric composites with improved thermal and mechanical properties. Adv. Mater. 2009, 21, 2889–2893.

    Article  Google Scholar 

  21. Hilder, T. A.; Gaston, N. Interaction of boron nitride nanosheets with model cell membranes. ChemPhysChem 2016, 17, 1573–1578.

    Article  Google Scholar 

  22. Ciofani, G.; Raffa, V.; Yu, J.; Chen, Y.; Obata, Y.; Takeoka, S.; Menciassi, A.; Cuschieri, A. Boron nitride nanotubes: A novel vector for targeted magnetic drug delivery. Curr. Nanosci. 2009, 5, 33–38.

    Article  Google Scholar 

  23. Ciofani, G.; Raffa, V.; Menciassi, A.; Cuschieri, A. Cytocompatibility, interactions, and uptake of polyethyleneiminecoated boron nitride nanotubes by living cells: Confirmation of their potential for biomedical applications. Biotechnol. Bioeng. 2008, 101, 850–858.

    Article  Google Scholar 

  24. Yang, C. K. Exploring the interaction between the boron nitride nanotube and biological molecules. Comput. Phys. Commun. 2011, 182, 39–42.

    Article  Google Scholar 

  25. Thomas, M.; Enciso, M.; Hilder, T. A. Insertion mechanism and stability of boron nitride nanotubes in lipid bilayers. J. Phys. Chem. B 2015, 119, 4929–4936.

    Article  Google Scholar 

  26. Li, L.; Li, L. H.; Ramakrishnan, S.; Dai, X. J.; Nicholas, K.; Chen, Y.; Chen, Z. Q.; Liu, X. W. Controlling wettability of boron nitride nanotube films and improved cell proliferation. J. Phys. Chem. C 2012, 116, 18334–18339.

    Article  Google Scholar 

  27. Li, L. H.; Chen, Y.; Glushenkov, A. M. Boron nitride nanotube films grown from boron ink painting. J. Mater. Chem. 2010, 20, 9679–9683.

    Article  Google Scholar 

  28. Xing, T.; Mateti, S.; Li, L. H.; Ma, F. X.; Du, A. J.; Gogotsi, Y.; Chen, Y. Gas protection of two-dimensional nanomaterials from high-energy impacts. Sci. Rep. 2016, 6, 35532.

    Article  Google Scholar 

  29. Brand-Williams, W.; Cuvelier, M. E.; Berset, C. Use of a free radical method to evaluate antioxidant activity. LWT-Food Sci. Technol. 1995, 28, 25–30.

    Article  Google Scholar 

  30. Sukhorukova, I. V.; Zhitnyak, I. Y.; Kovalskii, A. M.; Matveev, A. T.; Lebedev, O. I.; Li, X.; Gloushankova, N. A.; Golberg, D.; Shtansky, D. V. Boron nitride nanoparticles with a petal-like surface as anticancer drug-delivery systems. ACS Appl. Mater. Interfaces 2015, 7, 17217–17225.

    Article  Google Scholar 

  31. Pavia, D. L.; Lampman, G. M.; Kriz, G. S. Introduction to Spectroscopy: A Guide for Students of Organic Chemistry, 3rd ed.; Brooks/Cole: Pacific Grove, CA, USA, 2001.

    Google Scholar 

  32. Chen, Y.; Zou, J.; Campbell, S. J.; Le Caer, G. Boron nitride nanotubes: Pronounced resistance to oxidation. Appl. Phys. Lett. 2004, 84, 2430–2432.

    Article  Google Scholar 

  33. Catrenich, C. E.; Chestnut, M. H. Character and origin of vacuoles induced in mammalian cells by the cytotoxin of Helicobacter pylori. J. Med. Microbiol. 1992, 37, 389–395.

    Article  Google Scholar 

  34. Chen, Y.; McMillan-Ward, E.; Kong, J.; Israels, S. J.; Gibson, S. B. Oxidative stress induces autophagic cell death independent of apoptosis in transformed and cancer cells. Cell Death Differ. 2008, 15, 171–182.

    Article  Google Scholar 

  35. Lei, W. W.; Mochalin, V. N.; Liu, D.; Qin, S.; Gogotsi, Y.; Chen, Y. Boron nitride colloidal solutions, ultralight aerogels and freestanding membranes through one-step exfoliation and functionalization. Nat. Commun. 2015, 6, 8849.

    Article  Google Scholar 

  36. Perreault, F.; De Faria, A. F.; Nejati, S.; Elimelech, M. Antimicrobial properties of graphene oxide nanosheets: Why size matters. ACS Nano 2015, 9, 7226–7236.

    Article  Google Scholar 

  37. Kang, S.; Herzberg, M.; Rodrigues, D. F.; Elimelech, M. Antibacterial effects of carbon nanotubes: Size does matter! Langmuir 2008, 24, 6409–6413.

    Article  Google Scholar 

  38. Horváth, L.; Magrez, A.; Golberg, D.; Zhi, C. Y.; Bando, Y.; Smajda, R.; Horváth, E.; Forró, L.; Schwaller, B. In vitro investigation of the cellular toxicity of boron nitride nanotubes. ACS Nano 2011, 5, 3800–3810.

    Article  Google Scholar 

  39. Shang, L.; Nienhaus, K.; Nienhaus, G. U. Engineered nanoparticles interacting with cells: Size matters. J. Nanobiotechnol. 2014, 12, 5.

    Article  Google Scholar 

Download references

Acknowledgements

The authors gratefully thank the financial support from the Australian Research Council under the Discovery program. Experimental assistance from Mrs. Dongmei Zhang is acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ying Chen.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mateti, S., Wong, C.S., Liu, Z. et al. Biocompatibility of boron nitride nanosheets. Nano Res. 11, 334–342 (2018). https://doi.org/10.1007/s12274-017-1635-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-017-1635-y

Keywords

Navigation