Skip to main content
Log in

Time-resolved impact electrochemistry for quantitative measurement of single-nanoparticle reaction kinetics

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Single-nanoparticle electrochemistry has been established as a tool to characterize various nanomaterials based on the charge passed during their random impact at an electrode. Here it is demonstrated that the duration and shape of the resulting current peak can be used to quantify the reaction kinetics on a single-particle basis. Both the chemical rate constant and reaction mechanism for oxidation of single nanoparticles in different electrolytes can be determined directly from the duration of the current signal recorded in high-speed, highsensitivity current measurements. Using 29-nm-sized Ag particles in four different electrolytes as a proof of concept for this general approach, hitherto inaccessible insights into single-particle reactivity are provided. While comparable rate constants were measured for the four electrolytes at low overpotentials, transport-limited impacts at high overpotentials were found to depend strongly on the type and quantity of anions present in solution.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Xiao, X. Y.; Bard, A. J. Observing single nanoparticle collisions at an ultramicroelectrode by electrocatalytic amplification. J. Am. Chem. Soc. 2007, 129, 9610–9612.

    Article  Google Scholar 

  2. Kang, M.; Perry, D.; Kim, Y.-R.; Colburn, A. W.; Lazenby, R. A.; Unwin, P. R. Time-resolved detection and analysis of single nanoparticle electrocatalytic impacts. J. Am. Chem. Soc. 2015, 137, 10902–10905.

    Article  Google Scholar 

  3. Castañeda, A. D.; Robinson, D. A.; Stevenson, K. J.; Crooks, R. M. Electrocatalytic amplification of DNA-modified nanoparticle collisions via enzymatic digestion. Chem. Sci. 2016, 7, 6450–6457.

    Article  Google Scholar 

  4. Zhou, Y.-G.; Rees, N. V.; Compton, R. G. The electrochemical detection and characterization of silver nanoparticles in aqueous solution. Angew. Chem., Int. Ed. 2011, 50, 4219–4221.

    Article  Google Scholar 

  5. Yakushenko, A.; Mayer, D.; Buitenhuis, J.; Offenhä usser, A.; Wolfrum, B. Electrochemical artifacts originating from nanoparticle contamination by Ag/AgCl quasi-reference electrodes. Lab Chip 2014, 14, 602–607.

    Article  Google Scholar 

  6. Lim, C. S.; Tan, S. M.; Sofer, Z.; Pumera, M. Impact electrochemistry of layered transition metal dichalcogenides. ACS Nano 2015, 9, 8474–8483.

    Article  Google Scholar 

  7. Stuart, E. J. E.; Zhou, Y.-G.; Rees, N. V.; Compton, R. G. Determining unknown concentrations of nanoparticles: The particle-impact electrochemistry of nickel and silver. RSC Adv. 2012, 2, 6879–6884.

    Article  Google Scholar 

  8. Hao, R.; Zhang, B. Observing electrochemical dealloying by single-nanoparticle collision. Anal. Chem. 2016, 88, 8728–8734.

    Article  Google Scholar 

  9. Holt, L. R.; Plowman, B. J.; Young, N. P.; Tschulik, K.; Compton, R. G. The electrochemical characterization of single core-shell nanoparticles. Angew. Chem., Int. Ed. 2016, 55, 397–400.

    Article  Google Scholar 

  10. Robinson, D. A.; Kondajji, A. M.; Castañ eda, A. D.; Dasari, R.; Crooks, R. M.; Stevenson, K. J. Addressing colloidal stability for unambiguous electroanalysis of single nanoparticle impacts. J. Phys. Chem. Lett. 2016, 7, 2512–2517.

    Article  Google Scholar 

  11. Zhao, L.-J.; Qian, R.-C.; Ma, W.; Tian, H.; Long, Y.-T. Electrocatalytic efficiency analysis of catechol molecules for NADH oxidation during nanoparticle collision. Anal. Chem. 2016, 88, 8375–8379.

    Article  Google Scholar 

  12. Albrecht, T.; MacPherson, J.; Magnussen, O.; Fermin, D.; Crooks, R.; Gooding, J.; Hersbach, T.; Kanoufi, F.; Schuhmann, W.; Bentley, C. et al. Electrochemistry of single nanoparticles: General discussion. Faraday Discuss. 2016, 193, 387–413.

    Article  Google Scholar 

  13. Kätelhön, E.; Tanner, E. E. L.; Batchelor-McAuley, C.; Compton, R. G. Destructive nano-impacts: What information can be extracted from spike shapes? Electrochim. Acta 2016, 199, 297–304.

    Google Scholar 

  14. Bentley, C. L.; Kang, M.; Unwin, P. R. Time-resolved detection of surface oxide formation at individual gold nanoparticles: Role in electrocatalysis and new approach for sizing by electrochemical impacts. J. Am. Chem. Soc. 2016, 138, 12755–12758.

    Article  Google Scholar 

  15. Chen, C. H.; Ravenhill, E. R.; Momotenko, D.; Kim, Y. R.; Lai, S. C. S.; Unwin, P. R. Impact of surface chemistry on nanoparticle-electrode interactions in the electrochemical detection of nanoparticle collisions. Langmuir 2015, 31, 11932–11942.

    Article  Google Scholar 

  16. Wan, Y.; Guo, Z. R.; Jiang, X. L.; Fang, K.; Lu, X.; Zhang, Y.; Gu, N. Quasi-spherical silver nanoparticles: Aqueous synthesis and size control by the seed-mediated Lee-Meisel method. J. Colloid Interface Sci. 2013, 394, 263–268.

    Article  Google Scholar 

  17. Lees, J. C.; Ellison, J.; Batchelor-McAuley, C.; Tschulik, K.; Damm, C.; Omanovic, D.; Compton, R. G. Nanoparticle impacts show high-ionic-strength citrate avoids aggregation of silver nanoparticles. ChemPhysChem 2013, 14, 3895–3897.

    Article  Google Scholar 

  18. Rostek, A.; Mahl, D.; Epple, M. Chemical composition of surface-functionalized gold nanoparticles. J. Nanopart. Res. 2011, 13, 4809–4814.

    Article  Google Scholar 

  19. Zhou, Y.-G.; Haddou, B.; Rees, N. V.; Compton, R. G. The charge transfer kinetics of the oxidation of silver and nickel nanoparticles via particle-electrode impact electrochemistry. Phys. Chem. Chem. Phys. 2012, 14, 14354–14357.

    Article  Google Scholar 

  20. Samson, E.; Marchand, J.; Snyder, K. A. Calculation of ionic diffusion coefficients on the basis of migration test results. Mat. Struct. 2003, 36, 156–165.

    Article  Google Scholar 

  21. Ma, W.; Ma, H.; Chen, J.-F.; Peng, Y.-Y.; Yang, Z.-Y.; Wang, H.-F.; Ying, Y.-L.; Tian, H.; Long, Y.-T. Tracking motion trajectories of individual nanoparticles using timeresolved current traces. Chem. Sci. 2017, 8, 1854–1861.

    Article  Google Scholar 

  22. Ustarroz, J.; Kang, M.; Bullions, E.; Unwin, P. R. Impact and oxidation of single silver nanoparticles at electrode surfaces: One shot versus multiple events. Chem. Sci. 2017, 8, 1841–1853.

    Article  Google Scholar 

  23. Oja, S. M.; Robinson, D. A.; Vitti, N. J.; Edwards, M. A.; Liu, Y.-W.; White, H. S.; Zhang, B. Observation of multipeak collision behavior during the electro-oxidation of single Ag nanoparticles. J. Am. Chem. Soc. 2017, 139, 708–718.

    Article  Google Scholar 

  24. Ngamchuea, K.; Eloul, S.; Tschulik, K.; Compton, R. G. Advancing from rules of thumb: Quantifying the effects of small density changes in mass transport to electrodes. Understanding natural convection. Anal. Chem. 2015, 87, 7226–7234.

    Google Scholar 

  25. Brasiliense, V.; Patel, A. N.; Martinez-Marrades, A.; Shi, J.; Chen, Y.; Combellas, C.; Tessier, G.; Kanoufi, F. Correlated electrochemical and optical detection reveals the chemical reactivity of individual silver nanoparticles. J. Am. Chem. Soc. 2016, 138, 3478–3483.

    Article  Google Scholar 

  26. Hodson, H.; Li, X. T.; Batchelor-McAuley, C.; Shao, L. D.; Compton, R. G. Single nanotube voltammetry: Current fluctuations are due to physical motion of the nanotube. J. Phys. Chem. C 2016, 120, 6281–6286.

    Article  Google Scholar 

  27. Shimizu, K.; Tschulik, K.; Compton, R. G. Exploring the mineral–water interface: Reduction and reaction kinetics of single hematite (a-Fe2O3) nanoparticles. Chem. Sci. 2016, 7, 1408–1414.

    Article  Google Scholar 

Download references

Acknowledgements

We thank Professor Bernhard Wolfrum (TU Munich) for fruitful discussion and Sandra Schmidt for assistance in the SEM imaging. This work was financially supported by the Cluster of Excellence RESOLV (EXC 1069) funded by the German Research Foundation (DFG) and by a NRW Rückkehrer Fellowship

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kristina Tschulik.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Saw, E.N., Kratz, M. & Tschulik, K. Time-resolved impact electrochemistry for quantitative measurement of single-nanoparticle reaction kinetics. Nano Res. 10, 3680–3689 (2017). https://doi.org/10.1007/s12274-017-1578-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-017-1578-3

Keywords

Navigation