Skip to main content
Log in

Monolithically integrated CoP nanowire array: An on/off switch for effective on-demand hydrogen generation via hydrolysis of NaBH4 and NH3BH3

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

The issues of hydrogen generation and storage have hindered the widespread use and commercialization of hydrogen fuel cell vehicles. It is thus highly attractive, but the design and development of highly active non-noble-metal catalysts for on-demand hydrogen release from alkaline NaBH4 solution under mild conditions remains a key challenge. Herein, we describe the use of CoP nanowire array integrated on a Ti mesh (CoP NA/Ti) as a three-dimensional (3D) monolithic catalyst for efficient hydrolytic dehydrogenation of NaBH4 in basic solutions. The CoP NA/Ti works as an on/off switch for on-demand hydrogen generation at a rate of 6,500 mL/(min·g) and a low activation energy of 41 kJ/mol. It is highly robust for repeated usage after recycling, without sacrificing catalytic performance. Remarkably, this catalyst also performs efficiently for the hydrolysis of NH3BH3.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Schlapbach, L.; Züttel, A. Hydrogen-storage materials for mobile applications. Nature 2001, 414, 353–358.

    Article  Google Scholar 

  2. Yadav, M.; Xu, Q. Liquid-phase chemical hydrogen storage materials. Energy Environ. Sci. 2012, 5, 9698–9725.

    Article  Google Scholar 

  3. Zhou, L. M.; Zhang, T. R.; Tao, Z. L.; Chen, J. Ni nanoparticles supported on carbon as efficient catalysts for the hydrolysis of ammonia borane. Nano Res. 2014, 7, 774–781.

    Article  Google Scholar 

  4. Peng, B.; Chen, J. Functional materials with high-efficiency energy storage and conversion for batteries and fuel cells. Coord. Chem. Rev. 2009, 253, 2805–2813.

    Article  Google Scholar 

  5. Jacobson, M. Z.; Colella, W. G.; Golden, D. M. Cleaning the air and improving health with hydrogen fuel-cell vehicles. Science 2005, 308, 1901–1905.

    Article  Google Scholar 

  6. Peng, B.; Chen, J. Ammonia borane as an efficient and lightweight hydrogen storage medium. Energy Environ. Sci. 2008, 1, 479–483.

    Google Scholar 

  7. Xia, B. Q.; Chen, K.; Luo, W.; Cheng, G. Z. NiRh nanoparticles supported on nitrogen-doped porous carbon as highly efficient catalysts for dehydrogenation of hydrazine in alkaline solution. Nano Res. 2015, 8, 3472–3479.

    Article  Google Scholar 

  8. Cheng, F.; Tao, Z.; Liang, J.; Chen, J. Efficient hydrogen storage with the combination of lightweight Mg/MgH2 and nanostructures. Chem. Commun. 2012, 48, 7334–7343.

    Article  Google Scholar 

  9. Liu, C.; Fan, Y. Y.; Liu, M.; Cong, H. T.; Cheng, H. M.; Dresselhaus, M. S. Hydrogen storage in single-walled carbon nanotubes at room temperature. Science 1999, 286, 1127–1129.

    Article  Google Scholar 

  10. Bechelany, M.; Abou Chaaya, A.; Frances, F.; Akdim, O.; Cot, D.; Demirci, U. B.; Miele, P. Nanowires with controlled porosity for hydrogen production. J. Mater. Chem. A 2013, 1, 2133–2138.

    Article  Google Scholar 

  11. Eberle, U.; Felderhoff, M.; Schüth, F. Chemical and physical solutions for hydrogen storage. Angew. Chem., Int. Ed. 2009, 48, 6608–6630.

    Article  Google Scholar 

  12. Wang, S. H.; Fan, Y.; Chen, M. Q.; Xie, Y. Y.; Wang, D. W.; Su, C.-Y. Porous Co-P-Pd nanotube arrays for hydrogen generation by catalyzing the hydrolysis of alkaline NaBH4 solution. J. Mater. Chem. A 2015, 3, 8250–8255.

    Article  Google Scholar 

  13. Bhattacharjee, D.; Dasgupta, S. Trimetallic NiFePd nanoalloy catalysed hydrogen generation from alkaline hydrous hydrazine and sodium borohydride at room temperature. J. Mater. Chem. A 2015, 3, 24371–24378.

    Article  Google Scholar 

  14. Brown, H. C.; Brown, C. A. New, highly active metal catalysts for the hydrolysis of borohydride. J. Am. Chem. Soc. 1962, 84, 1493–1494.

    Article  Google Scholar 

  15. Schlesinger, H. I.; Brown, H. C.; Finholt, A. E.; Gilbreath, J. R.; Hoekstra, H. R.; Hyde, E. K. Sodium borohydride, its hydrolysis and its use as a reducing agent and in the generation of hydrogen. J. Am. Chem. Soc. 1953, 75, 215–219.

    Article  Google Scholar 

  16. Liu, B. H.; Li, Z. P. A review: Hydrogen generation from borohydride hydrolysis reaction. J. Power Sources 2009, 187, 527–534.

    Article  Google Scholar 

  17. Liao, J. Y.; Li, H.; Zhang, X. B.; Feng, K. J.; Yao, Y. L. Fabrication of a Ti-supported NiCo2O4 nanosheet array and its superior catalytic performance in the hydrolysis of ammonia borane for hydrogen generation. Catal. Sci. Technol. 2016, 6, 3893–3899.

    Article  Google Scholar 

  18. Paladini, M.; Arzac, G. M.; Godinho, V.; Jiménez de Haro, M. C.; Fernández, A. Supported Co catalysts prepared as thin films by magnetron sputtering for sodium borohydride and ammonia borane hydrolysis. Appl. Catal. B: Environ. 2014, 158–159, 400–409.

    Article  Google Scholar 

  19. Tian, J. Q.; Liu, Q.; Cheng, N. Y.; Asiri, A. M.; Sun, X. P. Self-supported Cu3P nanowire arrays as an integrated high-performance three-dimensional cathode for generating hydrogen from water. Angew. Chem., Int. Ed. 2014, 53, 9577–9581.

    Article  Google Scholar 

  20. Ren, Z.; Guo, Y. B.; Gao, P.-X. Nano-array based monolithic catalysts: Concept, rational materials design and tunable catalytic performance. Catal. Today 2015, 258, 441–453.

    Article  Google Scholar 

  21. Kuang, Y.; Feng, G.; Li, P. S.; Bi, Y. M.; Li, Y. P.; Sun, X. M. Single-crystalline ultrathin nickel nanosheets array from in situ topotactic reduction for active and stable electrocatalysis. Angew. Chem., Int. Ed. 2016, 55, 693–697.

    Article  Google Scholar 

  22. Popczun, E. J.; Read, C. G.; Roske, C. W.; Lewis, N. S.; Schaak, R. E. Highly active electrocatalysis of the hydrogen evolution reaction by cobalt phosphide nanoparticles. Angew. Chem., Int. Ed. 2014, 53, 5427–5430.

    Article  Google Scholar 

  23. Tian, J. Q.; Cheng, N. Y.; Liu, Q.; Xing, W.; Sun, X. P. Cobalt phosphide nanowires: Efficient nanostructures for fluorescence sensing of biomolecules and photocatalytic evolution of dihydrogen from water under visible light. Angew. Chem., Int. Ed. 2015, 54, 5493–5497.

    Article  Google Scholar 

  24. Liu, Q.; Tian, J. Q.; Cui, W.; Jiang, P.; Cheng, N. Y.; Asiri, A. M.; Sun, X. P. Carbon nanotubes decorated with CoP nanocrystals: A highly active non-noble-metal nanohybrid electrocatalyst for hydrogen evolution. Angew. Chem., Int. Ed. 2014, 53, 6710–6714.

    Article  Google Scholar 

  25. Grosvenor, A. P.; Wik, S. D.; Cavell, R. G.; Mar, A. Examination of the bonding in binary transition-metal monophosphides MP(M = Cr, Mn, Fe, Co) by X-ray photoelectron spectroscopy. Inorg. Chem. 2005, 44, 8988–8998.

    Article  Google Scholar 

  26. Li, H.; Yang, P. F.; Chu, D. S.; Li, H. X. Selective maltose hydrogenation to maltitol on a ternary Co–P–B amorphous catalyst and the synergistic effects of alloying B and P. Appl. Catal. A: Gen. 2007, 325, 34–40.

    Article  Google Scholar 

  27. Liu, C.-H.; Chen, B.-H.; Hsueh, C.-L.; Ku, J.-R.; Tsau, F.; Hwang, K.-J. Preparation of magnetic cobalt-based catalyst for hydrogen generation from alkaline NaBH4 solution. Appl. Catal. B: Environ. 2009, 91, 368–379.

    Article  Google Scholar 

  28. Ai, L. H.; Gao, X. Y.; Jiang, J. In situ synthesis of cobalt stabilized on macroscopic biopolymer hydrogel as economical and recyclable catalyst for hydrogen generation from sodium borohydride hydrolysis. J. Power Sources 2014, 257, 213–220.

    Article  Google Scholar 

  29. Li, H.; Liao, J. Y.; Zhang, X. B.; Liao, W. W.; Wen, L. L.; Yang, J. B.; Wang, H.; Wang, R. F. Controlled synthesis of nanostructured Co film catalysts with high performance for hydrogen generation from sodium borohydride solution. J. Power Sources 2013, 239, 277–283.

    Article  Google Scholar 

  30. Xu, D. Y.; Wang, H. Z.; Guo, Q. J.; Ji, S. F. Catalytic behavior of carbon supported Ni–B, Co–B and Co–Ni–B in hydrogen generation by hydrolysis of KBH4. Fuel Process. Technol. 2011, 92, 1606–1610.

    Article  Google Scholar 

  31. Guella, G.; Patton, B.; Miotello, A. Kinetic features of the platinum catalyzed hydrolysis of sodium borohydride from 11B NMR measurements. J. Phys. Chem. C 2007, 111, 18744–18750.

    Article  Google Scholar 

  32. Wu, Z. J.; Mao, X. K.; Zi, Q.; Zhang, R. R.; Dou, T.; Yip, A. C. K. Mechanism and kinetics of sodium borohydride hydrolysis over crystalline nickel and nickel boride and amorphous nickel–boron nanoparticles. J. Power Sources 2014, 268, 596–603.

    Article  Google Scholar 

  33. Guella, G.; Zanchetta, C.; Patton, B.; Miotello, A. New insights on the mechanism of palladium-catalyzed hydrolysis of sodium borohydride from 11B NMR measurements. J. Phys. Chem. B 2006, 110, 17024–17033.

    Article  Google Scholar 

  34. Peña-Alonso, R.; Sicurelli, A.; Callone, E.; Carturan, G.; Raj, R. A picoscale catalyst for hydrogen generation from NaBH4 for fuel cells. J. Power Sources 2007, 165, 315–323.

    Article  Google Scholar 

  35. Holbrook, K. A.; Twist, P. J. Hydrolysis of the borohydride ion catalysed by metal–boron alloys. J. Chem. Soc. A 1971, 890–894.

    Google Scholar 

  36. Patel, N.; Miotello, A. Progress in Co–B related catalyst for hydrogen production by hydrolysis of boron-hydrides: A review and the perspectives to substitute noble metals. Int. J. Hydrog. Energy 2015, 40, 1429–1464.

    Article  Google Scholar 

  37. Walter, J. C.; Zurawski, A.; Montgomery, D.; Thornburg, M.; Revankar, S. Sodium borohydride hydrolysis kinetics comparison for nickel, cobalt, and ruthenium boride catalysts. J. Power Sources 2008, 179, 335–339.

    Article  Google Scholar 

  38. Popczun, E. J.; McKone, J. R.; Read, C. G.; Biacchi, A. J.; Wiltrout, A. M.; Lewis, N. S.; Schaak, R. E. Nanostructured nickel phosphide as an electrocatalyst for the hydrogen evolution reaction. J. Am. Chem. Soc. 2013, 135, 9267–9270.

    Article  Google Scholar 

  39. Akdim, O.; Demirci, U. B.; Muller, D.; Miele, P. Cobalt (II) salts, performing materials for generating hydrogen from sodium borohydride. Int. J. Hydrog. Energy 2009, 34, 2631–2637.

    Article  Google Scholar 

  40. Erogbogbo, F.; Lin, T.; Tucciarone, P. M.; LaJoie, K. M.; Lai, L.; Patki, G. D.; Prasad, P. N.; Swihart, M. T. Ondemand hydrogen generation using nanosilicon: Splitting water without light, heat, or electricity. Nano Lett. 2013, 13, 451–456.

    Article  Google Scholar 

  41. Sattler, W.; Parkin, G. Zinc catalysts for on-demand hydrogen generation and carbon dioxide functionalization. J. Am. Chem. Soc. 2012, 134, 17462–17465.

    Article  Google Scholar 

  42. Zhu, Q.-L.; Xu, Q. Liquid organic and inorganic chemical hydrides for high-capacity hydrogen storage. Energy Environ. Sci. 2015, 8, 478–512.

    Article  Google Scholar 

  43. Metin, Ö.; Özkar, S.; Sun, S. H. Monodisperse nickel nanoparticles supported on SiO2 as an effective catalyst for the hydrolysis of ammonia-borane. Nano Res. 2010, 3, 676–684.

    Article  Google Scholar 

  44. Aranishi, K.; Jiang, H.-L.; Akita, T.; Haruta, M.; Xu, Q. One-step synthesis of magnetically recyclable Au/Co/Fe triple-layered core–shell nanoparticles as highly efficient catalysts for the hydrolytic dehydrogenation of ammonia borane. Nano Res. 2011, 4, 1233–1241.

    Article  Google Scholar 

  45. Sanyal, U.; Demirci, U. B.; Jagirdar, B. R.; Miele, P. Hydrolysis of ammonia borane as a hydrogen source: Fundamental issues and potential solutions towards implementation. ChemSusChem 2011, 4, 1731–1739.

    Article  Google Scholar 

  46. Marder, T. B. Will we soon be fueling our automobiles with ammonia–borane? Angew. Chem., Int. Ed. 2007, 46, 8116–8118.

    Article  Google Scholar 

  47. Yao, Q. L.; Lu, Z.-H.; Huang, W.; Chen, X. S.; Zhu, J. High Pt-like activity of the Ni–Mo/graphene catalyst for hydrogen evolution from hydrolysis of ammonia borane. J. Mater. Chem. A 2016, 4, 8579–8583.

    Article  Google Scholar 

  48. Glüer, A.; Förster, M.; Celinski, V. R.; Schmedt auf der Gü nne, J.; Holthausen, M. C.; Schneider, S. Highly active iron catalyst for ammonia borane dehydrocoupling at room temperature. ACS Catal. 2015, 5, 7214–7217.

    Article  Google Scholar 

  49. Peng, C. Y.; Kang, L.; Cao, S.; Chen, Y.; Lin, Z. S.; Fu, W. F. Nanostructured Ni2P as a robust catalyst for the hydrolytic dehydrogenation of ammonia–borane. Angew. Chem., Int. Ed. 2015, 54, 15725–15729.

    Article  Google Scholar 

  50. Chen, G. Z.; Desinan, S.; Rosei, R.; Rosei, F.; Ma, D. L. Synthesis of Ni–Ru alloy nanoparticles and their high catalytic activity in dehydrogenation of ammonia borane. Chem.—Eur. J. 2012, 18, 7925–7930.

    Article  Google Scholar 

  51. Wang, H. X.; Zhao, Y. R.; Cheng, F. Y.; Tao, Z. L.; Chen, J. Cobalt nanoparticles embedded in porous N-doped carbon as long-life catalysts for hydrolysis of ammonia borane. Catal. Sci. Technol. 2016, 6, 3443–3448.

    Article  Google Scholar 

  52. Mohajeri, N.; T-Raissi, A.; Adebiyi, O. Hydrolytic cleavage of ammonia-borane complex for hydrogen production. J. Power Sources 2007, 167, 482–485.

    Article  Google Scholar 

  53. Metin, Ö.; Sahin, S.; Özkar, S. Water-soluble poly(4-styrenesulfonic acid-co-maleic acid) stabilized ruthenium(0) and palladium(0) nanoclusters as highly active catalysts in hydrogen generation from the hydrolysis of ammonia–borane. Int. J. Hydrog. Energy 2009, 34, 6304–6313

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by Qingdao Innovation Leading Expert Program, Qingdao Basic & Applied Research project (No. 15-9-1-100-jch).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jingquan Liu.

Electronic supplementary material

12274_2016_1318_MOESM1_ESM.pdf

Monolithically integrated CoP nanowire array: An on/off switch for effective on-demand hydrogen generation via hydrolysis of NaBH4 and NH3BH3

Supplementary material, approximately 6.7 MB.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cui, L., Xu, Y., Niu, L. et al. Monolithically integrated CoP nanowire array: An on/off switch for effective on-demand hydrogen generation via hydrolysis of NaBH4 and NH3BH3 . Nano Res. 10, 595–604 (2017). https://doi.org/10.1007/s12274-016-1318-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-016-1318-0

Keywords

Navigation