Skip to main content
Log in

Self-assembled V2O5 interconnected microspheres produced in a fish-water electrolyte medium as a high-performance lithium-ion-battery cathode

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Interconnected microspheres of V2O5 composed of ultra-long nanobelts are synthesized in an environmental friendly way by adopting a conventional anodization process combined with annealing. The synthesis process is simple and low-cost because it does not require any additional chemicals or reagents. Commercial fish-water is used as an electrolyte medium to anodize vanadium foil for the first time. Electron microscopy investigation reveals that each belt consists of numerous nanofibers with free space between them. Therefore, this novel nanostructure demonstrates many outstanding features during electrochemical operation. This structure prevents self-aggregation of active materials and fully utilizes the advantage of active materials by maintaining a large effective contact area between active materials, conductive additives, and electrolyte, which is a key challenge for most nanomaterials. The electrodes exhibit promising electrochemical performance with a stable discharge capacity of 227 mAh·g–1 at 1C after 200 cycles. The rate capability of the electrode is outstanding, and the obtained capacity is as high as 278 at 0.5C, 259 at 1C, 240 at 2C, 206 at 5C, and 166 mAh·g–1 at 10C. Overall, this novel structure could be one of the most favorable nanostructures of vanadium oxide-based cathodes for Li-ion batteries.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Rao, C. N. R.; Cheetham, A. K. Science and technology of nanomaterials: Current status and future prospects. J. Mater. Chem. 2001, 11, 2887–2894.

    Article  Google Scholar 

  2. Wang, Y.; Cao, G. Z. Developments in nanostructured cathode materials for high-performance lithium-ion batteries. Adv. Mater. 2008, 20, 2251–2269.

    Article  Google Scholar 

  3. Mai, L. Q.; An, Q. Y.; Wei, Q. L.; Fei, J. Y.; Zhang, P. F.; Xu, X.; Zhao, Y. L.; Yan, M. Y.; Wen, W.; Xu, L. Nanoflakesassembled three-dimensional hollow-porous V2O5 as lithium storage cathodes with high-rate capacity. Small 2014, 10, 3032–3037.

    Article  Google Scholar 

  4. Han, C. H.; Pi, Y. Q.; An, Q. Y.; Mai, L. Q.; Xie, J. L.; Xu, X.; Xu, L.; Zhao, Y. L.; Niu, C. J.; Khan, A. M. et al. Substrate-aßsisted self-organization of radial ß-AgVO3 nanowire clusters for high rate rechargeable lithium batteries. Nano Lett. 2012, 12, 4668–4673.

    Article  Google Scholar 

  5. Jiang, J.; Li, Y. Y.; Liu, J. P.; Huang, X. T.; Yuan, C. Z.; Lou, X. W. Recent advances in metal oxide-based electrode architecture design for electrochemical energy storage. Adv. Mater. 2012, 24, 5166–5180.

    Article  Google Scholar 

  6. Li, W.; Deng, Y. H.; Wu, Z. X.; Qian, X. F.; Yang, J. P.; Wang, Y.; Gu, D.; Zhang, F.; Tu, B.; Zhao, D. Y. Hydrothermal etching assisted crystallization: A facile route to functional yolk-shell titanate microspheres with ultrathin nanosheets-assembled double shells. J. Am. Chem. Soc. 2011, 133, 15830–15833.

    Article  Google Scholar 

  7. Cao, A. M.; Hu, J. S.; Liang, H. P.; Wan, L. J. Self-assembled vanadium pentoxide (V2O5) hollow microspheres from nanorods and their application in lithium-ion batteries. Angew. Chem., Int. Ed. 2005, 44, 4391–4395.

    Article  Google Scholar 

  8. Wu, C. Z.; Xie, Y.; Lei, L. Y.; Hu, S. Q.; Ouyang, C. Z. Synthesis of new-phased VOOH hollow “dandelions” and their application in lithium-ion batteries. Adv. Mater. 2006, 18, 1727–1732.

    Article  Google Scholar 

  9. Wang, T. Y.; Peng, Z.; Wang, Y. H.; Tang, J.; Zheng, C. F. MnO nanoparticle@mesoporous carbon composites grown on conducting substrates featuring high-performance lithiumion battery, supercapacitor and sensor. Sci. Rep. 2013, 3, 2693.

    Google Scholar 

  10. Hwang, Y. J.; Wu, C. H.; Hahn, C.; Jeong, H. E.; Yang, P. D. Si/InGaN core/shell hierarchical nanowire arrays and their photoelectrochemical properties. Nano Lett. 2012, 12, 1678–1682.

    Article  Google Scholar 

  11. Mai, L. Q.; Xu, L.; Han, C. H.; Xu, X.; Luo, Y. Z.; Zhao, S. Y.; Zhao, Y. L. Electrospun ultralong hierarchical vanadium oxide nanowires with high performance for lithium ion batteries. Nano Lett. 2010, 10, 4750–4755.

    Article  Google Scholar 

  12. Niu, C. J.; Meng, J. S.; Han, C. H.; Zhao, K. N.; Yan, M. Y.; Mai, L. Q. VO2 nanowires assembled into hollow microspheres for high-rate and long-life lithium batteries. Nano Lett. 2014, 14, 2873–2878.

    Article  Google Scholar 

  13. Brezesinski, T.; Wang, J.; Tolbert, S. H.; Dunn, B. Ordered mesoporous a-MoO3 with iso-oriented nanocrystalline walls for thin-film pseudocapacitors. Nat. Mater. 2010, 9, 146–151.

    Article  Google Scholar 

  14. Tian, B. Z.; Xie, P.; Kempa, T. J.; Bell, D. C.; Lieber, C. M. Single-crystalline kinked semiconductor nanowire superstructures. Nat. Nanotechnol. 2009, 4, 824–829.

    Article  Google Scholar 

  15. Ge, J. P.; Hu, Y. X.; Biasini, M.; Beyermann, W. P.; Yin, Y. D. Superparamagnetic magnetite colloidal nanocrystal clusters. Angew. Chem., Int. Ed. 2007, 46, 4342–4345.

    Article  Google Scholar 

  16. Zhang, Q.; Wang, W. S.; Goebl, J.; Yin, Y. D. Self-templated synthesis of hollow nanostructures. Nano Today 2009, 4, 494–507.

    Article  Google Scholar 

  17. Ge, J. P.; Zhang, Q.; Zhang, T. R.; Yin, Y. D. Core-satellite nanocomposite catalysts protected by a porous silica shell: Controllable reactivity, high stability, and magnetic recyclability. Angew. Chem., Int. Ed. 2008, 47, 8924–8928.

    Article  Google Scholar 

  18. Wang, S. Q.; Li, S. R.; Sun, Y.; Feng, X. Y.; Chen, C. H. Three-dimensional porous V2O5 cathode with ultra high rate capability. Energy Environ. Sci. 2011, 4, 2854–2857.

    Article  Google Scholar 

  19. Qu, Q. T.; Zhu, Y. S.; Gao, X. W.; Wu, Y. P. Core-shell structure of polypyrrole grown on V2O5 nanoribbon as high performance anode material for supercapacitors. Adv. Energy Mater. 2012, 2, 950–955.

    Article  Google Scholar 

  20. Zhou, S.; Yang, X. G.; Lin, Y. J.; Xie, J.; Wang, D. W. A nanonet-enabled Li ion battery cathode material with high power rate, high capacity, and long cycle lifetime. ACS Nano 2012, 6, 919–924.

    Article  Google Scholar 

  21. Chernova, N. A.; Roppolo, M.; Dillon, A. C.; Whittingham, M. S. Layered vanadium and molybdenum oxides: Batteries and electrochromics. J. Mater. Chem. 2009, 19, 2526–2552.

    Article  Google Scholar 

  22. Reddy, M. V.; Subba Rao, G. V.; Chowdari, B. V. R. Metal oxides and oxysalts as anode materials for Li Ion batteries. Chem. Rev. 2013, 113, 5364–5457.

    Article  Google Scholar 

  23. Wang, Y.; Cao, G. Z. Synthesis and enhanced intercalation properties of nanostructured vanadium oxides. Chem. Mater. 2006, 18, 2787–2804.

    Article  Google Scholar 

  24. Wang, Y.; Takahashi, K.; Lee, K. H.; Cao, G. Z. Nanostructured vanadium oxide electrodes for enhanced lithium-ion intercalation. Adv. Funct. Mater. 2006, 16, 1133–1144.

    Article  Google Scholar 

  25. Hu, Y. S.; Liu, X.; Mü ller, J. O.; Schlögl, R.; Maier, J.; Su, D. S. Synthesis and electrode performance of nanostructured V2O5 by using a carbon tube-in-tube as a nanoreactor and an efficient mixed-conducting network. Angew. Chem., Int. Ed. 2009, 48, 210–214.

    Article  Google Scholar 

  26. Zhai, T. Y.; Liu, H. M.; Li, H. Q.; Fang, X. S.; Liao, M. Y.; Li, L.; Zhou, H. S.; Koide, Y.; Bando, Y.; Golberg, D. Centimeter-long V2O5 nanowires: From synthesis to fieldemission, electrochemical, electrical transport, and photoconductive properties. Adv. Mater. 2010, 22, 2547–2552.

    Article  Google Scholar 

  27. Li, G. C.; Zhang, C. Q.; Peng, H. R.; Hen, K. Z. Onedimensional V2O5@polyaniline core/shell nanobelts synthesized by an in situ polymerization method. Macromol. Rapid Commun. 2009, 30, 1841–1845.

    Article  Google Scholar 

  28. Wang, Y.; Zhang, H. J.; Lim, W. X.; Lin, J. Y.; Wong, C. C. Designed strategy to fabricate a patterned V2O5 nanobelt array as a superior electrode for Li-ion batteries. J. Mater. Chem. 2011, 21, 2362–2368.

    Article  Google Scholar 

  29. Wu, H. B.; Pan, A. Q.; Hng, H. H.; Lou, X. W. Templateassisted formation of rattle-type V2O5 hollow microspheres with enhanced lithium storage properties. Adv. Funct. Mater. 2013, 23, 5669–5674.

    Article  Google Scholar 

  30. Pan, A. Q.; Wu, H. B.; Yu, L.; Lou, X. W. Template-free synthesis of VO2 Hollow microspheres with various interiors and their conversion into V2O5 for lithium-ion batteries. Angew. Chem., Int. Ed. 2013, 52, 2226–2230.

    Article  Google Scholar 

  31. Guo, Y. G.; Hu, J. S.; Wan, L. J. Nanostructured materials for electrochemical energy conversion and storage devices. Adv. Mater. 2008, 20, 2878–2887.

    Article  Google Scholar 

  32. Zhang, C. F.; Chen, Z. X.; Guo, Z. P.; Lou, X. W. Additive-free synthesis of 3D porous V2O5 hierarchical microspheres with enhanced lithium storage properties. Energy Environ. Sci. 2013, 6, 974–978.

    Article  Google Scholar 

  33. Kowalski, D.; Kim, D.; Schmuki, P. TiO2 nanotubes, nanochannels and mesosponge: Self-organized formation and applications. Nano Today 2013, 8, 235–264.

    Article  Google Scholar 

  34. Yang, Y.; Albu, S. P.; Kim, D.; Schmuki, P. Enabling the anodic growth of highly ordered V2O5 nanoporous/nanotubular structures. Angew. Chem., Int. Ed. 2011, 50, 9071–9075.

    Article  Google Scholar 

  35. Odani, A.; Pol, V. G.; Pol, S. V.; Koltypin, M.; Gedanken, A.; Aurbach, D. Testing carbon-coated VOx prepared via reaction under autogenic pressure at elevated temperature as Li-insertion materials. Adv. Mater. 2006, 18, 1431–1436.

    Article  Google Scholar 

  36. Rui, X. H.; Ding, N.; Liu, J.; Li, C.; Chen, C. H. Analysis of the chemical diffusion coefficient of lithium ions in Li3V2(PO4)3 cathode material. Electrochim. Acta 2010, 55, 2384–2390.

    Article  Google Scholar 

  37. Pan, A. Q.; Zhang, J. G.; Nie, Z. M.; Cao, G. Z.; Arey, B. W.; Li, G. S.; Liang, S. Q.; Liu, J. Facile synthesized nanorod structured vanadium pentoxide for high-rate lithium batteries. J. Mater. Chem. 2010, 20, 9193–9199.

    Article  Google Scholar 

  38. Zhang, X. F.; Wang, K. X.; Wei, X.; Chen, J. S. Carboncoated V2O5 nanocrystals as high performance cathode material for lithium ion batteries. Chem. Mater. 2011, 23, 5290–5292.

    Article  Google Scholar 

  39. Sakunthala, A.; Reddy, M. V.; Selvasekarapandian, S.; Chowdari, B. V. R.; Selvin, P. C. Energy storage studies of bare and doped vanadium pentoxide, (V1.95M0.05)O5, M = Nb, Ta, for lithium ion batteries. Energy Environ. Sci. 2011, 4, 1712–1725.

    Article  Google Scholar 

  40. Murugan, A. V.; Reddy, M. V.; Campet, G.; Vijayamohanan, K. Cyclic voltammetry, electrochemical impedance and ex situ X-ray diffraction studies of electrochemical insertion and deinsertion of lithium ion into nanostructured organicinorganic poly(3,4-ethylenedioxythiophene) based hybrids. J. Electroanal. Chem. 2007, 603, 287–296.

    Article  Google Scholar 

  41. Yang, Y.; Li, L.; Fei, H. L.; Peng, Z. W.; Ruan, G. D.; Tour, J. M. Graphene nanoribbon/V2O5 cathodes in lithium-ion batteries. ACS Appl. Mater. Interfaces 2014, 6, 9590–9594.

    Article  Google Scholar 

  42. An, Q. Y.; Zhang, P. F.; Xiong, F. Y.; Wei, Q. L.; Sheng, J. Z.; Wang, Q. Q.; Mai, L. Q. Three-dimensional porous V2O5 hierarchical octahedrons with adjustable pore architectures for long-life lithium batteries. Nano Res. 2015, 8, 481–490.

    Article  Google Scholar 

  43. Li, Y. W.; Yao, J. H.; Uchaker, E.; Yang, J. W.; Huang, Y. X.; Zhang, M.; Cao, G. Z. Leaf-like V2O5 nanosheets fabricated by a facile green approach as high energy cathode material for lithium-ion batteries. Adv. Energy Mater. 2013, 3, 1171–1175.

    Article  Google Scholar 

  44. Lee, J. W.; Lim, S. Y.; Jeong, H. M.; Hwang, T. H.; Kang, J. K.; Choi, J. W. Extremely stable cycling of ultra-thin V2O5 nanowire-graphene electrodes for lithium rechargeable battery cathodes. Energy Environ. Sci. 2012, 5, 9889–9894.

    Article  Google Scholar 

  45. Pan, A. Q.; Wu, H. B.; Zhang, L.; Lou, X. W. Uniform V2O5 nanosheet-assembled hollow microflowers with excellent lithium storage properties. Energy Environ. Sci. 2013, 6, 1476–1479.

    Article  Google Scholar 

  46. Wang, B.; Wang, Y.; Sun, B.; Munro, P.; Wang, G. X. Coral-like V2O5 nanowhiskers as high-capacity cathode materials for lithium-ion batteries. RSC Adv. 2013, 3, 5069–5075.

    Article  Google Scholar 

  47. Chao, D. L.; Xia, X. H.; Liu, J. L.; Fan, Z. X.; Ng, C. F.; Lin, J. Y.; Zhang, H.; Shen, Z. X.; Fan, H. J. A V2O5/ conductive-polymer core/shell nanobelt array on threedimensional graphite foam: A high-rate, ultrastable, and freestanding cathode for lithium-ion batteries. Adv. Mater. 2014, 26, 5794–5800.

    Article  Google Scholar 

  48. Wang, Z. Y.; Luan, D. Y.; Madhavi, S.; Hu, Y.; Lou, X. W. Assembling carbon-coated a-Fe2O3 hollow nanohorns on the CNT backbone for superior lithium storage capability. Energy Environ. Sci. 2012, 5, 5252–5256.

    Article  Google Scholar 

  49. Chen, D. Y.; Mei, X.; Ji, G.; Lu, M. H.; Xie, J. P.; Lu, J. M.; Lee, J. Y. Reversible lithium-ion storage in silver-treated nanoscale hollow porous silicon particles. Angew. Chem., Int. Ed. 2012, 51, 2409–2413.

    Article  Google Scholar 

  50. Liu, J.; Wang, X.; Peng, Q.; Li, Y. Vanadium pentoxide nanobelts: Highly selective and stable ethanol sensor materials. Adv. Mater. 2005, 17, 764–767.

    Article  Google Scholar 

  51. Gu, G.; Schmid, M.; Chiu, P. W.; Minett, A.; Fraysse, J.; Kim, G. T.; Roth, S.; Kozlov, M.; Muñoz, E.; Bauhgman, R. H. V2O5 nanofibre sheet actuators. Nat. Mater. 2003, 2, 316–319.

    Article  Google Scholar 

  52. Spahr, M. E.; Stoschitzki-Bitterli, P.; Nesper, R.; Haas, O.; Novák, P. Vanadium oxide nanotubes. A new nanostructured redox-active material for the electrochemical insertion of lithium. J. Electrochem. Soc. 1999, 146, 2780–2783.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Md Mokhlesur Rahman or Abu Z. Sadek.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rahman, M.M., Sadek, A.Z., Sultana, I. et al. Self-assembled V2O5 interconnected microspheres produced in a fish-water electrolyte medium as a high-performance lithium-ion-battery cathode. Nano Res. 8, 3591–3603 (2015). https://doi.org/10.1007/s12274-015-0859-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-015-0859-y

Keywords

Navigation