Skip to main content
Log in

Ammonium bicarbonate reduction route to uniform gold nanoparticles and their applications in catalysis and surface-enhanced Raman scattering

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

A new protocol for the synthesis of nearly monodisperse gold nanoparticles with controllable size is described. The pathway is based on the reduction of AuCl 4 by ammonium bicarbonate in the presence of sodium stearate under hydrothermal conditions. The particle sizes could be easily tuned by regulating the reaction conditions including precursor concentration, reaction temperature and growth time. A tentative explanation for the reduction and growth mechanism of uniform gold nanoparticles has been proposed. The as-prepared gold particles showed good catalytic activity for the reduction of 4-nitrophenol to 4-aminophenol by excess NaBH4, and a surface-enhanced Raman scattering (SERS) study suggested that the gold nanoparticles exhibited a high SERS effect on the probe molecule Rhodamine 6G.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Daniel, M. C.; Astruc, D. Gold nanoparticles: Assembly, supramolecular chemistry, quantum-size-related properties, and applications toward biology, catalysis, and nanotechnology. Chem. Rev. 2004, 104, 293–346.

    Article  CAS  Google Scholar 

  2. Jana, N. R.; Peng, X. G. Single-phase and gram-scale routes toward nearly monodisperse Au and other noble metal nanocrystals. J. Am. Chem. Soc. 2003, 125, 14280–14281.

    Article  CAS  Google Scholar 

  3. Haruta, M. When Gold is not noble: Catalysis by nanoparticles. Chem. Rec. 2003, 3, 75–87.

    Article  CAS  Google Scholar 

  4. Park, J.; Joo, J.; Kwon, S. G.; Jang, Y.; Hyeon, T. Synthetic procedure for monodisperse nanoparticles using hot injection method. Angew. Chem. Int. Ed. 2007, 46, 4630–4660.

    Article  CAS  Google Scholar 

  5. Yang, X.; Skrabalak, S. E.; Li, Z.; Xia, Y.; Wang, L. V. Photoacoustic tomography of a rat cerebral cortex in vivo with Au nanocages as an optical contrast agent. Nano Lett. 2007, 7, 3798–3802.

    Article  CAS  Google Scholar 

  6. Chen, M.; Kumar, D.; Yi, C.; Goodman, D. W. The promotional effect of gold in catalysis by palladium-gold. Science 2005, 310, 291–293.

    Article  CAS  Google Scholar 

  7. Alvarez-Puebla, R. A.; Contreras-Cáceres, R.; Pastoriza-Santos, I.; Pérez-Juste, J.; Liz-Marzán, L. M. Au@pNIPAM colloids as molecular traps for surface-enhanced, spectroscopic, ultrasensitive analysis. Angew. Chem. Int. Ed. 2009, 48, 138–143.

    Article  CAS  Google Scholar 

  8. Brust, M.; Schiffrin, D. J.; Bethell, D.; Kiely, C. J. Novel gold-dithiol nano-networks with non-metallic electronic properties. Adv. Mater. 1995, 7, 795–797.

    Article  CAS  Google Scholar 

  9. Hussain, I.; Graham, S.; Wang, Z.; Tan, B.; Sherrington, D. C.; Rannard, S. P.; Cooper, A. I.; Brust, M. Size-controlled synthesis of near-monodisperse gold nanoparticles in the 1–4 nm range using polymeric stabilizers. J. Am. Chem. Soc. 2005, 127, 16398–16399.

    Article  CAS  Google Scholar 

  10. Pretzer, L. A.; Nguyen, Q. X.; Wong, M. S. Controlled growth of sub-10 nm gold nanoparticles using carbon monoxide reductant. J. Phys. Chem. C 2010, 114, 21226–21233.

    Article  CAS  Google Scholar 

  11. Wang, X.; Zhuang, J.; Peng, Q.; Li, Y. A general strategy for nanocrystal synthesis. Nature 2005, 437, 121–124.

    Article  CAS  Google Scholar 

  12. Hiramatsu, H.; Osterloh, F. E. A simple large-scale synthesis of nearly monodisperse gold and silver nanoparticles with adjustable sizes and with exchangeable surfactants. Chem. Mater. 2004, 16, 2509–2511.

    Article  CAS  Google Scholar 

  13. Hoppe, C. E.; Lazzari, M.; Pardiňas-Blanco, I.; López-Quintela, M. A. One-step synthesis of gold and silver hydrosols using poly(N-vinyl-2-pyrrolidone) as a reducing agent. Langmuir 2006, 22, 7027–7034.

    Article  CAS  Google Scholar 

  14. Sun, Y.; Xia, Y. Shape-controlled synthesis of gold and silver nanoparticles. Science 2002, 298, 2176–2179.

    Article  CAS  Google Scholar 

  15. Brust, M.; Walker, M.; Bethell, D.; Schiffrin, D. J.; Whyman, R. Synthesis of thiol-derivatised gold nanoparticles in a twophase liquid-liquid system. J. Chem. Soc., Chem. Commun. 1994, 801–802.

  16. Brust, M.; Fink, J.; Bethell, D.; Schiffrin, D. J.; Kiely, C. Synthesis and reactions of functionalised gold nanoparticles. J. Chem. Soc., Chem. Commun. 1995, 1655–1656.

  17. Toshima, N.; Yonezawa, T. Bimetallic nanoparticles-novel materials for chemical and physical applications. New J. Chem. 1998, 22, 1179–1201.

    Article  CAS  Google Scholar 

  18. Zheng, N.; Fan, J.; Stucky, G. D. One-step one-phase synthesis of monodisperse noble-metallic nanoparticles and their colloidal crystals. J. Am. Chem. Soc. 2006, 128, 6550–6551.

    Article  CAS  Google Scholar 

  19. Shen, C.; Hui, C.; Yang, T.; Xiao, C.; Tian, J.; Bao, L.; Chen, S.; Ding, H.; Gao, H. Monodisperse noble-metal nanoparticles and their surface enhanced Raman scattering properties. Chem. Mater. 2008, 20, 6939–6944.

    Article  CAS  Google Scholar 

  20. Faraday, M. Experimental relations of gold (and other metals) to light. Philos. Trans. R. Soc. London 1857, 147, 145–181.

    Article  Google Scholar 

  21. Turkevich, J.; Stevenson, P. C.; Hillier, J. A study of the nucleation and growth processes in the synthesis of colloidal gold. Discuss. Faraday Soc. 1951, 11, 55–75.

    Article  Google Scholar 

  22. Ji, X.; Song, X.; Li, J.; Bai, Y.; Yang, W.; Peng, X. Size control of gold nanocrystals in citrate reduction: The third role of citrate. J. Am. Chem. Soc 2007, 129, 13939–13948.

    Article  CAS  Google Scholar 

  23. Turkevich, J.; Kim, G. Palladium: Preparation and catalytic properties of particles of uniform size. Science 1970, 169, 873–879.

    Article  CAS  Google Scholar 

  24. Chang, C. C.; Wu, H. L.; Kuo, C. H.; Huang, M. H. Hydrothermal synthesis of monodispersed octahedral gold nanocrystals with five different size ranges and their self-assembled structures. Chem. Mater. 2008, 20, 7570–7574.

    Article  CAS  Google Scholar 

  25. Peng, X. G.; Wickham, J.; Alivisatos, A. P. Kinetics of II–VI and III–V colloidal semiconductor nanocrystal growth: “Focusing” of size distributions. J. Am. Chem. Soc. 1998, 120, 5343–5344.

    Article  CAS  Google Scholar 

  26. Kumar, S. S.; Kumar, C. S.; Mathiyarasu, J.; Phani, K. L. Stabilized gold nanoparticles by reduction using 3,4-ethylenedioxythiophene-polystyrenesulfonate in aqueous solutions: Nanocomposite formation, stability, and application in catalysis. Langmuir 2007, 23, 3401–3408.

    Article  CAS  Google Scholar 

  27. Bailie, J. E.; Hutchings, G. J. Promotion by sulfur of gold catalysts for crotyl alcohol formation from crotonaldehyde hydrogenation. Chem. Commun.1999, 2151–2152.

  28. Han, J.; Liu, Y.; Guo, R. Facile synthesis of highly stable gold nanoparticles and their unexpected excellent catalytic activity for Suzuki-Miyaura cross-coupling reaction in water. J. Am. Chem. Soc. 2009, 131, 2060–2061.

    Article  CAS  Google Scholar 

  29. Su, F. Z.; He, L.; Ni, J.; Cao, Y.; He, H. Y.; Fan, K. N. Efficient and chemoselective reduction of carbonyl compounds with supported gold catalysts under transfer hydrogenation conditions. Chem. Commun. 2008, 3531–3533.

  30. Hayakawa, K.; Yoshimura, T.; Esumi, K. Preparation of gold dendrimer nanocomposites by laser irradiation and their catalytic reduction of 4-nitrophenol, Langmuir 2003, 19, 5517–5521.

    Article  CAS  Google Scholar 

  31. Zeng, J.; Zhang, Q.; Chen, J.; Xia. Y. A comparison study of the catalytic properties of Au-based nanocages nanoboxes, and nanoparticles. Nano. Lett. 2010, 10, 30–35.

    Article  CAS  Google Scholar 

  32. Kneipp, K.; Kneipp, H.; Itzkan, I.; Dasari, R. R.; Feld, M. S. Ultrasensitive chemical analysis by Raman spectroscopy. Chem. Rev. 1999, 99, 2957–2975.

    Article  CAS  Google Scholar 

  33. Creighton, J. A.; Blatchford, C. G.; Albretch, M. G. Plasma resonance enhancement of Raman scattering by pyridine adsorbed on silver or gold sol particles of size comparable to the excitation wavelength. J. Chem. Soc. Faraday Trans. 2 1979, 75, 790–798.

    Article  CAS  Google Scholar 

  34. Ghosh, S. K.; Pal, T. Interparticle coupling effect on the surface plasmon resonance of gold nanoparticles: From theory to applications. Chem. Rev. 2007, 107, 4797–4862.

    Article  CAS  Google Scholar 

  35. Hildebrandt, P.; Stockburger, M. Surface-enhanced resonance Raman spectroscopy of Rhodamine 6G adsorbed on colloidal silver. J. Phys. Chem. 1984, 88, 5935–5944.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qing Yang.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wu, F., Yang, Q. Ammonium bicarbonate reduction route to uniform gold nanoparticles and their applications in catalysis and surface-enhanced Raman scattering. Nano Res. 4, 861–869 (2011). https://doi.org/10.1007/s12274-011-0142-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-011-0142-9

Keywords

Navigation