Skip to main content
Log in

Optical properties of laterally aligned Si nanowires for transparent electronics applications

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

We have investigated the optical properties of laterally aligned Si nanowire (SiNW) arrays in order to explore their potential applicability in transparent electronics. The SiNW array exhibited good optical transparency in the visible spectral range with a transmittance of ∼90% for a NW density of ∼20–25 per 10 μm. In addition, polarization-dependent measurements revealed a variation in transmittance in the range of 80%–95% depending on the angle between the polarization of incident light and the NW axis. Using the SiNWs, we demonstrated that transparent transistors exhibit good optical transparency (greater than 80%) and showed typical p-type SiNW transistor characteristics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Nomura, K.; Ohta, H.; Ueda, K.; Kamiya, T.; Hirano, M.; Hosono, H. Thin-film transistor fabricated in single-crystalline transparent oxide semiconductor. Science 2003, 300, 1269–1272.

    Article  CAS  Google Scholar 

  2. Someya, T. Optics: Electronic eyeballs. Nature 2008, 454, 703–704.

    Article  CAS  Google Scholar 

  3. Nomura, K.; Ohta, H.; Takagi, A.; Kamiya, T.; Hirano, M.; Hosono, H. Room-temperature fabrication of transparent flexible thin-film transistors using amorphous oxide semiconductors. Nature 2004, 432, 488–492.

    Article  CAS  Google Scholar 

  4. Cao, Q.; Hur, S. H.; Zhu, Z. T.; Sun, Y.; Wang, C.; Meitl, M. A.; Shim, M.; Rogers, J. A. Highly bendable, transparent thin-film transistors that use carbon-nanotube-based conductors and semiconductors with elastomeric dielectrics. Adv. Mater. 2006, 18, 304–309.

    Article  CAS  Google Scholar 

  5. Gorrn, P.; Sander, M.; Meyer, J.; Kroger, M.; Becker, E.; Johannes, H. H.; Kowalsky, W.; Riedl, T. Towards seethrough displays: Fully transparent thin-film transistors driving transparent organic light-emitting diodes. Adv. Mater. 2006, 18, 738–741.

    Article  Google Scholar 

  6. Kim, H.; Horwiz, J. S.; Kushto, G. P.; Kafafi, Z. H.; Chrisey, D. B. Indium tin oxide thin films grown on flexible plastic substrates by pulsed-laser deposition for organic light-emitting diodes. Appl. Phys. Lett. 2001, 79, 284–286.

    Article  CAS  Google Scholar 

  7. Izaki, M.; Omi, T. Transparent zinc oxide films prepared by electrochemical reaction. Appl. Phys. Lett. 1996, 68, 2439–2440.

    Article  CAS  Google Scholar 

  8. Ju, S.; Facchetti, A.; Xuan, Y.; Liu, J.; Ishikawa, F.; Ye, P.; Zhou, C.; Marks, T. J.; Janes, D. B. Fabrication of fully transparent nanowire transistors for transparent and flexible electronics. Nat. Nanotechnol. 2007, 2, 378–384.

    Article  CAS  Google Scholar 

  9. Dattoli, E. N.; Wan, Q.; Guo, W.; Chen, Y.; Pan, X.; Lu, W. Fully transparent thin-film transistor devices based on SnO2 nanowires. Nano Lett. 2007, 7, 2463–2469.

    Article  CAS  Google Scholar 

  10. Artukovic, E.; Kaempgen, M.; Hecht, D. S.; Roth, S.; Gruner, G. Transparent and flexible carbon nanotube transistors. Nano Lett. 2005, 5, 757–760.

    Article  CAS  Google Scholar 

  11. Ishikawa, F. N.; Chang, H. K.; Ryu, K.; Chen, P.; Badmaev, A.; De Arco Gomez, L.; Shen, G.; Zhou, C. Transparent electronics based on transfer printed aligned carbon nanotubes on rigid and flexible substrates. ACS Nano 2008, 3, 73–79.

    Article  Google Scholar 

  12. Patolsky, F.; Zheng, G.; Lieber, C. M. Fabrication of silicon nanowire devices for ultrasensitive, label-free, real-time detection of biological and chemical species. Nat. Protoc. 2006, 1, 1711–1724.

    Article  CAS  Google Scholar 

  13. Duan, X.; Niu, C.; Sahi, V.; Chen, J.; Parce, J. W.; Empedocles, S.; Goldman, J. L. High-performance thin-film transistors using semiconductor nanowires and nanoribbons. Nature 2003, 425, 274–278.

    Article  CAS  Google Scholar 

  14. Oubre, C.; Nordlander P. Optical properties of metallodielectric nanostructures calculated using the finite difference time domain method. J. Phys. Chem. B 2004, 108, 17740–17747.

    Article  CAS  Google Scholar 

  15. Javey, A.; Nam, S. W.; Friedman, R. S.; Yan, H.; Lieber, C. M. Layer-by-layer assembly of nanowires for three-dimensional, multifunctional electronics. Nano Lett. 2007, 7, 773–777.

    Article  CAS  Google Scholar 

  16. Landau, L. D.; Lifshitz, E. M.; Pitaevskii, L. P. Electrodynamics of Continuous Media; Pergamon: Oxford, England, 1984.

    Google Scholar 

  17. Wang, J.; Gudiksen, M. S.; Duan, X.; Cui, Y.; Lieber, C. M. Highly polarized photoluminescence and photo detection from single indium phosphide nanowires. Science 2001, 293, 1455–1457.

    Article  CAS  Google Scholar 

  18. Pangal, K.; Sturm, J. C.; Wagner, S. Integration of amorphous and polycrystalline silicon thin-film transistors through selective crystallization of amorphous silicon. Appl. Phys. Lett. 1999, 75, 2091–2093.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Ungyu Paik, John A. Rogers or Won Il Park.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lee, D.H., Yi, J., Lee, W.W. et al. Optical properties of laterally aligned Si nanowires for transparent electronics applications. Nano Res. 4, 817–823 (2011). https://doi.org/10.1007/s12274-011-0138-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-011-0138-5

Keywords

Navigation