Skip to main content
Log in

Synthesis and high electrocatalytic performance of hexagram shaped gold particles having an open surface structure with kinks

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

Hexagram shaped gold particles and their analogues enclosed by high index facets with kinks have been successfully synthesized by reducing HAuCl4 with ascorbic acid (AA) in the presence of poly(diallyldimethylammonium chloride) at room temperature. By using electron microscopy, the surfaces of the hexagram shaped Au particle were found to be {541} planes, which contain high-density steps and kinks. In addition, it was found that hexagonal shield-like and other kind of particles present in the product were analogues of the hexagram shaped Au particles structure, in that they had the same surface structure. In order to confirm the surface structure of all the prepared particles, surface structure sensitive underpotential deposition of Pb was carried out, and the cyclic voltammetric profile was in accordance with the proposed {541} surface. Finally, structure-property relationships of the Au hexagrams were experimentally analyzed by employing the electrocatalytic oxidation of AA as a probe reaction. The electrocatalytic reactions of gold cubes with low-index {100} facets and gold trioctahedra with {221} facets were studied as references. The experimental results showed that the hexagram shaped Au particles and their analogues with exposed {541} facets have the highest catalytic activity among the three kinds of gold particles, owing to the high density of kink atoms. This study should motivate us to further explore methods for the preparation of other well-defined polyhedral metal nanocrystals enclosed by high index surfaces.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Somorjai, G. A.; Blakely, D. W. Mechanism of catalysis of hydrocarbon reactions by platinum surfaces. Nature 1975, 258, 580–583.

    Article  CAS  Google Scholar 

  2. Somorjai, G. A. Modern surface science and surface technologies: An introduction. Chem. Rev. 1996, 96, 1223–1236.

    Article  CAS  Google Scholar 

  3. Baldauf, M.; Kolb, D. M. Formic acid oxidation on ultrathin Pd films on Au(hkl) and Pt(hkl) electrodes. J. Phys. Chem. 1996, 100, 11375–11381.

    Article  CAS  Google Scholar 

  4. Hoshi, N.; Kida, K.; Nakamura, M.; Nakada, M.; Osada, K. Structural effects of electrochemical oxidation of formic acid on single crystal electrodes of palladium. J. Phys. Chem. B 2006, 110, 12480–12484.

    Article  CAS  Google Scholar 

  5. Mahmoud, M. A.; Tabor, C. E.; El-Sayed, M. A.; Ding, Y.; Wang, Z. L. A new catalytically active colloidal platinum nanocatalyst: The multiarmed nanostar single crystal. J. Am. Chem. Soc. 2008, 130, 4590–4591.

    Article  CAS  Google Scholar 

  6. Lee, H.; Habas, S. E.; Kweskin S.; Butcher D.; Somorjai, G. A.; Yang, P. D. Morphological control of catalytically active platinum nanocrystals. Angew. Chem. Int. Ed. 2006, 45, 7824–7828.

    Article  CAS  Google Scholar 

  7. Narayanan, R.; El-Sayed, M. A. Catalysis with transition metal nanoparticles in colloidal solution: Nanoparticle shape dependence and stability. J. Phys. Chem. B 2005, 109, 12663–12676.

    Article  CAS  Google Scholar 

  8. Zijlstra, P.; Chon, J. W. M.; Gu, M. Five-dimensional optical recording mediated by surface plasmons in gold nanorods. Nature 2009, 459, 410–413.

    Article  CAS  Google Scholar 

  9. Tao, A. R.; Habas, S.; Yang, P. D. Shape control of colloidal metal nanocrystals. Small 2008, 4, 310–325.

    Article  CAS  Google Scholar 

  10. Tian, Z. Q.; Ren, B.; Wu, D. Y. Surface-enhanced Raman scattering: From noble to transition metals and from rough surfaces to ordered nanostructures. J. Phys. Chem. B 2002, 106, 9463–9383.

    Article  CAS  Google Scholar 

  11. Choi, J. S.; Choi, H. J.; Jung, D. C.; Lee, J. H.; Cheon, J. Nanoparticle assisted magnetic resonance imaging of the early reversible stages of amyloid β self-assembly. Chem. Commun. 2008, 2197–2199.

  12. Meulenberg, R. W.; Lee, J. R. I.; McCall, S. K.; Hanif, K. M.; Haskel, D.; Lang, J. C.; Terminello, L. J.; Buuren, T. V. Evidence for ligand-induced paramagnetism in CdSe quantum dots. J. Am. Chem. Soc. 2009, 131, 6888–6889.

    Article  CAS  Google Scholar 

  13. Boisselier, E.; Astruc, D. Gold nanoparticles in nanomedicine: Preparations, imaging, diagnostics, therapies and toxicity. Chem. Soc. Rev. 2009, 38, 1759–1782.

    Article  CAS  Google Scholar 

  14. Yang, H. G.; Sun, C. H.; Qiao, S. Z.; Zou, J.; Liu, G.; Smith, S. C.; Cheng, H. M.; Lu, G. Q. Anatase TiO2 single crystals with a large percentage of reactive facets. Nature 2008, 453, 638–641.

    Article  CAS  Google Scholar 

  15. Hang, X. G.; Kuang, Q.; Jin, M. S.; Xie, Z. X.; Zheng, L. S. Synthesis of titania nanosheets with a high percentage of exposed (001) facets and related photocatalytic properties. J. Am. Chem. Soc. 2009, 131, 3152–3153.

    Article  Google Scholar 

  16. Yang, H. G.; Liu, G.; Qiao, S. Z.; Sun, C. H.; Jin, Y. G.; Smith, S. C.; Zou, J.; Cheng, H. M.; Lu, G. Q. Solvothermal synthesis and photoreactivity of anatase TiO2 nanosheets with dominant {001} facets. J. Am. Chem. Soc. 2009, 131, 4078–4083.

    Article  CAS  Google Scholar 

  17. Xie, X. W.; Li, Y.; Liu, Z. Q.; Haruta, M.; Shen, W. J. Low- temperature oxidation of CO catalysed by Co3O4 nanorods. Nature 2009, 458, 746–749.

    Article  CAS  Google Scholar 

  18. Lebedeva, N. P.; Koper, M. T. M.; Feliu, J. M.; van Santen, R. A. Role of crystalline defects in electrocatalysis: Mechanism and kinetics of CO adlayer oxidation on stepped platinum electrodes. J. Phys. Chem. B 2002, 106, 12938–12947.

    Article  CAS  Google Scholar 

  19. Sun, S. G.; Chen, A. C.; Huang, T. S.; Li, J. B.; Tian, Z. W. Electrocatalytic properties of Pt(111), Pt(332), Pt(331) and Pt(110) single crystal electrodes towards ethylene glycol oxidation in sulphuric acid solutions. J. Electroanal. Chem. 1992, 340, 213–216.

    Article  CAS  Google Scholar 

  20. Sau, T. K.; Murphy, C. J. Room temperature, high-yield synthesis of multiple shapes of gold nanoparticles in aqueous solution. J. Am. Chem. Soc. 2004, 126, 8648–8649.

    Article  CAS  Google Scholar 

  21. Li, C. C.; Shuford, K. L.; Park, Q. -H.; Cai, W. P.; Li, Y.; Lee, E. J.; Cho, S. O. High-yield synthesis of single-crystalline gold nano-octahedra. Angew. Chem. Int. Ed. 2007, 46, 3264–3268.

    Article  CAS  Google Scholar 

  22. Niu, W. X.; Zheng, S. L.; Wang, D. W.; Liu, X. Q.; Li, H. J.; Han, S.; Chen, J. A.; Tang, Z. Y.; Xu, G. B. Selective synthesis of single-crystalline rhombic dodecahedral, octahedral, and cubic gold nanocrystals. J. Am. Chem. Soc. 2009, 131, 697–703.

    Article  CAS  Google Scholar 

  23. Tian, N.; Zhou, Z. Y.; Sun, S. G.; Ding, Y.; Wang, Z. L. Synthesis of tetrahexahedral platinum nanocrystals with high-index facets and high electro-oxidation activity. Science 2007, 316, 732–735.

    Article  CAS  Google Scholar 

  24. Tian, N.; Zhou, Z. Y.; Sun, S. G. Platinum metal catalysts of high-index surfaces: From single-crystal planes to electrochemically shape-controlled nanoparticles. J. Phys. Chem. C 2008, 112, 19801–19817.

    Article  CAS  Google Scholar 

  25. Ma, Y. Y.; Kuang, Q.; Jiang, Z. Y.; Xie, Z. X.; Huang, R. B.; Zheng, L. S. Synthesis of trisoctahedral gold nanocrystals with exposed high-index facets by a facile chemical method. Angew. Chem. Int. Ed. 2008, 47, 8901–8904.

    Article  CAS  Google Scholar 

  26. Ming, T.; Feng, W.; Tang, Q.; Wang, F.; Sun, L. D.; Wang, J. F.; Yan, C. H. Growth of tetrahexahedral gold nanocrystals with high-index facets. J. Am. Chem. Soc. 2009, 131, 16350–16351.

    Article  CAS  Google Scholar 

  27. Liao, H. G.; Jiang, Y. X.; Zhou, Z. Y.; Chen, S. P.; Sun, S. G. Shape-controlled synthesis of gold nanoparticles in deep eutectic solvents for studies of structure-functionality relationships in electrocatalysis. Angew. Chem. Int. Ed. 2008, 47, 9100–9103.

    Article  CAS  Google Scholar 

  28. Zhang, J.; Langille, M. R.; Personick, M. L.; Zhang, K.; Li, S. Y.; Mirkin, C. A. Concave cubic gold nanocrystals with high-index facets. J. Am. Chem. Soc. 2010, 132, 14012–14014.

    Article  CAS  Google Scholar 

  29. Yu, Y.; Zhang, Q. B.; Lu, X. M.; Lee, J. Y. Seed-mediated synthesis of monodisperse concave trisoctahedral gold nanocrystals with controllable sizes. J. Phys. Chem. C 2010, 114, 11119–11126.

    Article  CAS  Google Scholar 

  30. Li, J.; Wang, L. H.; Liu, L.; Guo, L.; Han, X. D.; Zhang, Z. Synthesis of tetrahexahedral Au nanocrystals with exposed high-index surfaces. Chem. Commun. 2010, 46, 5109–5111.

    Article  CAS  Google Scholar 

  31. Kim, D. Y.; Im, S. H.; Park, O. O. Synthesis of tetrahexahedral gold nanocrystals with high-index facets. Cryst. Growth Des. 2010, 10, 3321–3323.

    Article  CAS  Google Scholar 

  32. Murphy, C. J.; Sau, T. K.; Gole, A. M.; Orendorff, C. J.; Gao, J. X.; Gou, L. F.; Hunyadi, S. E.; Li, T. Anisotropic metal nanoparticles: Synthesis, assembly, and optical applications. J. Phys. Chem. B 2005, 109, 13857–13870.

    Article  CAS  Google Scholar 

  33. Liang, H. Y.; Yang, H. X.; Wang, W. Z.; Li, J. Q.; Xu, H. X. High-yield uniform synthesis and microstructure-determination of rice-shaped silver nanocrystals. J. Am. Chem. Soc. 2009, 131, 6068–6069.

    Article  CAS  Google Scholar 

  34. Germain, V.; Li, J.; Ingert, D.; Wang, Z. L.; Pileni, M. P. Stacking faults in formation of silver nanodisks. J. Phys. Chem. B 2003, 107, 8717–8720.

    Article  CAS  Google Scholar 

  35. Zhang, S. H.; Jiang, Z. Y.; Xie, Z. X.; Xu, X.; Huang, R. B.; Zheng L. S. Growth of silver nanowires from solutions: A cyclic penta-twinned-crystal growth mechanism. J. Phys. Chem. B 2005, 109, 9416–9421.

    Article  CAS  Google Scholar 

  36. Aherne, D.; Ledwith, D. M.; Gara, M.; Kelly, J. M. Optical properties and growth aspects of silver nanoprisms produced by a highly reproducible and rapid synthesis at room temperature. Adv. Funct. Mater. 2008, 18, 2005–2016.

    Article  CAS  Google Scholar 

  37. Hamelin, A. Cyclic voltammetry at gold single-crystal surfaces. Part 1. Behaviour at low-index faces. J. Electroanal. Chem. 1996, 407, 1–11.

    Article  Google Scholar 

  38. Hernández, J.; Solla-Gullón, J.; Herrero, E. Gold nanoparticles synthesized in a water-in-oil microemulsion: Electrochemical characterization and effect of the surface structure on the oxygen reduction reaction. J. Electroanal. Chem. 2004, 574, 185–196.

    Article  Google Scholar 

  39. Hernández, J.; Solla-Gullón, J.; Herrero, E.; Aldaz, A.; Feliu, J. M. Electrochemistry of shape-controlled catalysts: Oxygen reduction reaction on cubic gold nanoparticles. J. Phys. Chem. C 2007, 111, 14078–14083.

    Article  Google Scholar 

  40. Wang, Z. J.; Yuan, J. H.; Zhou, M.; Niu, L.; Ivaska, A. Synthesis, characterization and mechanism of cetyltrimethylammonium bromide bilayer-encapsulated gold nanosheets and nanocrystals. Appl. Surf. Sci. 2008, 254, 6289–6293.

    Article  CAS  Google Scholar 

  41. Kou, X. S.; Zhang, S. Z.; Tsung, C. K.; Yang, Z.; Yeung, M. H.; Stucky, G. D.; Sun, L. D.; Wang, J. F.; Yan, C. H. One-step synthesis of large-aspect-ratio single-crystalline gold nanorods by using CTPAB and CTBAB surfactants. Chem. Eur. J. 2007, 13, 2929–2936.

    Article  CAS  Google Scholar 

  42. Gole, A.; Murphy, C. J. Seed-mediated synthesis of gold nanorods: Role of the size and nature of the seed. Chem. Mater. 2004, 16, 3633–3640.

    Article  CAS  Google Scholar 

  43. Yamamoto, M.; Kashiwagi, Y.; Sakata, T.; Mori, H.; Nakamoto, M. Synthesis and morphology of star-shaped gold nanoplates protected by poly(N-vinyl-2-pyrrolidone). Chem. Mater. 2005, 17, 5391–5393.

    Article  CAS  Google Scholar 

  44. Li, C. C.; Shuford, K. L.; Chen, M. H.; Lee, E. J.; Cho, S. O. A facile polyol route to uniform gold octahedra with tailorable size and their optical properties. ACS Nano 2008, 2, 1760–1769.

    Article  CAS  Google Scholar 

  45. Chen, H. J.; Wang, Y. L.; Dong, S. J. An effective hydrothermal route for the synthesis of multiple PDDA-protected noble-metal nanostructures. Inorg. Chem. 2007, 46, 10587–10593.

    Article  CAS  Google Scholar 

  46. Trasatti, S.; Petrii, O. A. Real surface area measurements in electrochemistry. Pure Appl. Chem. 1991, 63, 711–734.

    Article  CAS  Google Scholar 

  47. Woods, R. Chemisorption at electrodes: Hydrogen and oxygen on nobel metals and their alloys. In Electroanalytical Chemistry—A Series of Advances; Bard, A. J., Ed.; Marcel Dekker, Inc.: New York and Basel, 1976; pp. 119–125.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhaoxiong Xie.

Additional information

These authors contributed equally to this work.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jiang, Q., Jiang, Z., Zhang, L. et al. Synthesis and high electrocatalytic performance of hexagram shaped gold particles having an open surface structure with kinks. Nano Res. 4, 612–622 (2011). https://doi.org/10.1007/s12274-011-0117-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-011-0117-x

Keywords

Navigation