Skip to main content
Log in

Theoretical investigations of the catalytic role of water in propene epoxidation on gold nanoclusters: A hydroperoxyl-mediated pathway

  • Research Article
  • Published:
Nano Research Aims and scope Submit manuscript

Abstract

We report a comprehensive theoretical investigation of the catalytic reaction mechanisms of propene epoxidation on gold nanoclusters using density functional theory (DFT). We have shown that water acts as a catalytic promoter for propene epoxidation on gold catalysts. Even without reducible supports, hydroperoxyl (OOH) and hydroxyl (OH) radicals are readily formed on small-size gold clusters from co-adsorbed H2O and O2, with energy barriers as low as 4–6 kcal/mol (1 cal = 4.186 J). Propene epoxidation occurs easily through reactions between C3H6 and the weakened O-O bond of the OOH radicals on the surfaces of gold clusters.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Haruta, M.; Kabayashi, T.; Sano, H.; Yamada, N. Novel gold catalysts for the oxidation of carbon-monoxide at a temperature far below 0 °C. Chem. Lett. 1987, 16, 405–408.

    Article  Google Scholar 

  2. Haruta, M. Size- and support-dependency in the catalysis of gold. Catal. Today 1997, 36, 153–166.

    Article  CAS  Google Scholar 

  3. Hayashi, T.; Tanaka, K.; Haruta, M. Selective vapor-phase epoxidation of propylene over Au/TiO2 catalysts in the presence of oxygen and hydrogen. J. Catal. 1998, 178, 566–575.

    Article  CAS  Google Scholar 

  4. Huang, J. H.; Akita, T.; Ohashi, H.; Haruta, M. Gold clusters supported on alkaline treated TS-1 for highly efficient propene epoxidation with O2 and H2. Appl. Catal. B 2010, 95, 430–438.

    Article  CAS  Google Scholar 

  5. Lee, S.; Molina, L. M.; López, M. J.; Alonso, J. A.; Hammer, B.; Lee, B.; Seifert, S.; Winans, R. E.; Elam, J. W.; Pellin, M. J.; Vajda, S. Selective Propene epoxidation on immobilized Au6-10 clusters: The Effect of hydrogen and water on activity and selectivity. Angew. Chem. Int. Ed. 2009, 48, 1467–1471.

    Article  CAS  Google Scholar 

  6. Ojeda, M.; Iglesia, E. Catalytic epoxidation of propene with H2O-O2 reactants on Au/TiO2. Chem. Commun. 2009, 352–354.

  7. Huang, J. H.; Akita, T.; Faye, J.; Fujitani, T.; Takei, T.; Haruta, M. Propene epoxidation with dioxygen catalyzed by gold clusters. Angew. Chem. Int. Ed. 2009, 48, 7862–7866.

    Article  CAS  Google Scholar 

  8. Delley, B. An all-electron numerical-method for solving the local density functional for polyatomic-molecules. J. Chem. Phys. 1990, 92, 508–517.

    Article  CAS  Google Scholar 

  9. Delley, B. From molecules to solids with the DMol3 approach. J. Chem. Phys. 2000, 113, 7756–7764.

    Article  CAS  Google Scholar 

  10. Perdew, J. P.; Burke, K.; Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 1996, 77, 3865–3868.

    Article  CAS  Google Scholar 

  11. Delley, B. Hardness conserving semilocal pseudopotentials. Phys. Rev. B 2002, 113, 155125.

    Article  Google Scholar 

  12. Huang, W.; Wang, L. -S. Au 10 : Isomerism and structure-dependent O2 reactivity. Phys. Chem. Chem. Phys. 2009, 11, 2663–2667.

    Article  CAS  Google Scholar 

  13. Govind, N.; Petersen, M.; Fitzgerald, G.; King-Smith D.; Andzelm. J. A generalized synchronous transit method for transition state location. Comp. Mater. Sci. 2003, 28, 250–258.

    Article  CAS  Google Scholar 

  14. Yoon, B.; Häkkinen, H.; Landman, U. Interaction of O2 with gold clusters: Molecular and dissociative adsorption. J. Phys. Chem. A 2003, 107, 4066–4071.

    Article  CAS  Google Scholar 

  15. López, N.; Nørskov, J. K. Catalytic CO oxidation by a gold nanoparticle: A density functional study. J. Am. Chem. Soc. 2002, 124, 11262–11263.

    Article  Google Scholar 

  16. Mills, G.; Gordon, M. S.; Metiu, H. The adsorption of molecular oxygen on neutral and negative Aun clusters (n = 2−5). Chem. Phys. Lett. 2002, 359, 493–499.

    Article  CAS  Google Scholar 

  17. Zhai, H. J.; Kiran, B.; Dai, B. Li, J. Wang, L. S. Unique CO chemisorption properties of gold hexamer: Au6(CO)n (n = 0−3). J. Am. Chem. Soc. 2005, 127, 12098–12106.

    Article  CAS  Google Scholar 

  18. Zhai, H. J.; Pan, L. L.; Dai, B.; Li, J.; Wang, L. S. Chemisorption-induced structural changes and transition from chemisorption to physisorption in Au6(CO)n (n = 4−9). J. Phys. Chem. C 2008, 112, 11920–11928.

    Article  CAS  Google Scholar 

  19. Yang, X. -F.; Wang, Y. -L.; Zhao, Y. -F.; Wang, A. -Q.; Zhang, T.; Li, J. Adsorption-induced structural changes of gold cations from two- to three-dimensions. Phys. Chem. Chem. Phys. 2010, 12, 3038–3043.

    Article  CAS  Google Scholar 

  20. Bongiorno, A.; Landman, U. Water-enhanced catalysis of CO oxidation on free and supported gold nanoclusters. Phys. Rev. Lett. 2005, 95, 106102.

    Article  Google Scholar 

  21. Xu, Z.; Xiao, F. S.; Purnell, S. K.; Alexeev, O.; Kawl, S.; Deutsch, S. E.; Gates, B. C. Size-dependent catalytic activity of supported metal-clusters. Nature 1994, 372, 346–348.

    Article  CAS  Google Scholar 

  22. Ajo, H. M.; Bondzie, V. A.; Campbell, C. T. Propene adsorption on gold particles on TiO2(110). Catal. Lett. 2002, 78, 359–368.

    Article  CAS  Google Scholar 

  23. Nijhuis, T. A.; Sacaliuc, E.; Beale, A. M.; van der Eerden, A. M. J.; Schouten, J. C.; Weckhuysen, B. M. Spectroscopic evidence for the adsorption of propene on gold nano-particles during the hydro-epoxidation of propene. J. Catal. 2008, 258, 256–264.

    Article  CAS  Google Scholar 

  24. Yang, X. F.; Wang, A. Q.; Wang, X. D.; Zhang, T.; Han, K.; Li, J. Combined experimental and theoretical investigation on the selectivities of Ag, Au, and Pt catalysts for hydrogenation of crotonaldehyde. J. Phys. Chem. C 2009, 113, 20918–20926.

    Article  CAS  Google Scholar 

  25. Yang, X. F.; Wang, A. Q.; Wang, Y. L.; Zhang, T.; Li, J. Unusual selectivity of gold catalysts for hydrogenation of 1,3-butadiene toward cis-2-butene: A joint experimental and theoretical investigation. J. Phys. Chem. C 2010, 114, 3131–3139.

    Article  CAS  Google Scholar 

  26. Pei, Y.; Shao, N.; Gao, Y.; Zeng, X. C. Investigating active site of gold nanoparticle Au55(PPh3)12Cl6 in selective oxidation. ACS Nano 2010, 4, 2009–2020.

    Article  CAS  Google Scholar 

  27. Epling, W. S.; Peden, C. H. F.; Henderson, M. A.; Diebold, U. Evidence for oxygen adatoms on TiO2(110) resulting from O2 dissociation at vacancy sites. Surf. Sci. 1998, 412, 333–343.

    Article  Google Scholar 

  28. Wang, H. Y.; Schneider, W. F. Nature and role of surface carbonates and bicarbonates in CO oxidation over RuO2. Phys. Chem. Chem. Phys. 2010, 12, 6367–6374.

    Article  CAS  Google Scholar 

  29. Furche, F.; Ahlrichs, R.; Weis, P.; Jacob, C.; Gilb, S.; Bierweiler, T.; Kappes, M. M. The structures of small gold cluster anions as determined by a combination of ion mobility measurements and density functional calculations. J. Chem. Phys. 2002, 117, 6982–6990.

    Article  CAS  Google Scholar 

  30. Häkkinen, H.; Yoon, B.; Landman, U.; Li, X.; Zhai, H. J.; Wang, L. S. On the electronic and atomic structures of small Au N (N = 4−14) clusters: A photoelectron spectroscopy and density-functional study. J. Phys. Chem. A 2003, 107, 6168–6175.

    Article  Google Scholar 

  31. Ji, M.; Gu, X.; Li, X.; Gong, X.; Li, J.; Wang, L. S. Experimental and Theoretical Investigation of the Electronic and Geometrical Structures of the Au32 Cluster. Angew. Chem. Int. Ed. 2005, 44, 7119–7123.

    Article  CAS  Google Scholar 

  32. Wells, D. H.; Delgass, W. N.; Thomson, K. T. Evidence of defect-promoted reactivity for epoxidation of propylene in titanosilicate (TS-1) catalysts: A DFT study. J. Am. Chem. Soc. 2004, 126, 2956–2962.

    Article  CAS  Google Scholar 

  33. Vayssilov, G. N.; van Santen, R. A. Catalytic activity of titanium silicalites: A DFT study. J. Catal. 1998, 175, 170–174.

    Article  CAS  Google Scholar 

  34. Sinclair, P. E.; Catlow, C. R. A. Quantum chemical study of the mechanism of partial oxidation reactivity in titano-silicate catalysts: Active site formation, oxygen transfer, and catalyst deactivation. J. Phys. Chem. B 1999, 103, 1084–1095.

    Article  CAS  Google Scholar 

  35. Munakata, H.; Oumi, Y.; Miyamoto, A. A DFT study on peroxo-complex in titanosilicate catalyst: Hydrogen peroxide activation on titanosilicalite-1 catalyst and reaction mechanisms for catalytic olefin epoxidation and for hydroxylamine formation from ammonia. J. Phys. Chem. B 2001, 105, 3493–3501.

    Article  CAS  Google Scholar 

  36. Joshi, A. M.; Delgass, W. N.; Thomson, K. T. Partial oxidation of propylene to propylene oxide over a neutral gold trimer in the gas phase: A density functional theory study. J. Phys. Chem. B 2006, 110, 2572–2581.

    Article  CAS  Google Scholar 

  37. Chen, M. S.; Goodman, D. W. The structure of catalytically active gold on titania. Science 2004, 306, 252–255.

    Article  CAS  Google Scholar 

  38. Lemire, C.; Meyer, R.; Shaikhutdinov, S.; Freund, H. J. Do quantum size effects control CO adsorption on gold nanoparticles? Angew. Chem. Int. Ed. 2004, 43, 118–121.

    Article  Google Scholar 

  39. Bell, A. T. The impact of nanoscience on heterogeneous catalysis. Science 2003, 299, 1688–1691.

    Article  CAS  Google Scholar 

  40. Tao, F.; Grass, M. E.; Zhang, Y. W.; Butcher, D. R.; Renzas, J. R.; Liu, Z.; Chung J. Y.; Mun, B. S.; Salmeron, M.; Somorjai, G. A. Reaction-driven restructuring of Rh-Pd and Pt-Pd core-shell nanoparticles. Science 2008, 322, 932–934.

    Article  CAS  Google Scholar 

  41. Lu, J.; Bravo-Suárez, J. J.; Takahashi, A.; Haruta, M.; Oyama, S. T. In situ UV-vis studies of the effect of particle size on the epoxidation of ethylene and propylene on supported silver catalysts with molecular oxygen. J. Catal. 2005, 232, 85–95.

    Article  CAS  Google Scholar 

  42. Zemichael, F. W.; Palermo, A.; Tikhov, M. S.; Lambert, R. M. Propene epoxidation over K-promoted Ag/CaCO3 catalysts: The effect of metal particle size. Catal. Lett. 2002, 80, 93–98.

    Article  CAS  Google Scholar 

  43. de Oliveira, A. L.; Wolf, A.; Schuth, F. Highly selective propene epoxidation with hydrogen/oxygen mixtures over titania-supported silver catalysts. Catal. Lett. 2001, 73, 157–160.

    Article  Google Scholar 

  44. Roldan, A.; Ricart, J. M.; Illas, F. Origin of the size dependence of Au nanoparticles toward molecular oxygen dissociation. Theor. Chem. Acc. 2009, 123, 119–126.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jun Li.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chang, CR., Wang, YG. & Li, J. Theoretical investigations of the catalytic role of water in propene epoxidation on gold nanoclusters: A hydroperoxyl-mediated pathway. Nano Res. 4, 131–142 (2011). https://doi.org/10.1007/s12274-010-0083-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12274-010-0083-8

Keywords

Navigation