Skip to main content
Log in

Seagrass Viviparous Propagules as a Potential Long-Distance Dispersal Mechanism

  • Published:
Estuaries and Coasts Aims and scope Submit manuscript

Abstract

Resilience of seagrass meadows relies on the ability of seagrass to successfully recolonise denuded areas or disperse to new areas. While seed germination and rhizome extension have been explored as modes of recovery and expansion, the contribution of seagrass viviparous propagules to meadow population dynamics has received little attention. Here, we investigated the potential of seagrass viviparous propagules to act as dispersal vectors. We performed a series of density surveys, and in situ and mesocosm-based experiments in Port Phillip Bay, VIC, Australia, using Zostera nigricaulis, a species known to produce viviparous propagules. Production of viviparous propagules was higher at sites with high wind and current exposure, compared to more sheltered environments. A number of propagules remained buoyant and healthy for more than 85 days, suggesting the capacity for relatively long-distance dispersal. Transplanted propagules were found to have improved survivorship within seagrass habitats compared to bare sediment over the short term (4 weeks); however, all propagules suffered longer-term (<100 days) mortality in field experiments. Conditions outside of meadows, including sediment scouring, reduced the likelihood of successful colonisation in bare sediment. Furthermore, sediment characteristics within meadows, such as a smaller grain size and high organic content, positively influenced propagule establishment. This research provides preliminary evidence that propagules have the potential to act as an important long-distance dispersal vector, a process that has previously gone unrecognised. Even though successful establishment of propagules may be rare, viviparous propagules show great potential for seagrass populations given they are facing global decline.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Alberto, F., L. Gouveia, S. Arnaud-Haond, J.L. Perez-Llorens, C.M. Duarte, and E.A. Serrao. 2005. Within-population spatial genetic structure, neighbourhood size and clonal subrange in the seagrass Cymodocea nodosa. Molecular Ecology 14: 2669–2681.

    Article  CAS  Google Scholar 

  • Alberto, F., S. Arnaud-Haond, C.M. Duarte, and E.A. Serrão. 2006. Genetic diversity of a clonal angiosperm near its range limit: the case of Cymodocea nodosa at the Canary Islands. Marine Ecology Progress Series 309: 117.

    Article  CAS  Google Scholar 

  • Balke, T., T.J. Bouma, E.M. Horstman, E.L. Webb, P.L. Erftemeijer, and P.M. Herman. 2011. Windows of opportunity: thresholds to mangrove seedling establishment on tidal flats. Marine Ecology Progress Series 440

  • Bastyan, G., and M. Cambridge. 2008. Transplantation as a method for restoring the seagrass Posidonia australis. Estuarine, Coastal and Shelf Science 79: 289–299.

    Article  Google Scholar 

  • Berković, B., S. Cabaco, J.M. Barrio, R. Santos, E.A. Serrão, and F. Alberto. 2013. Extending the life history of a clonal aquatic plant: dispersal potential of sexual and asexual propagules of Zostera noltii. Aquatic Botany

  • Billingham, M.R., T.B.H. Reusch, F. Alberto, and E.A. Serrão. 2003. Is asexual reproduction more important at geographical limits? A genetic study of the seagrass Zostera marina in the Ria Formosa, Portugal. Marine Ecology Progress Series 265: 77–83.

    Article  Google Scholar 

  • Bird, E. 2011. Changes on the coastline of Port Phillip Bay. Melbourne: Victorian Government Department of Sustainability and Environment

  • Black, K., D. Hatton, and M. Rosenberg. 1993. Locally and externally-driven dynamics of a large semi-enclosed bay in Southern Australia. Journal of Coastal Research 9: 509–538.

    Google Scholar 

  • Blake, S. and D. Ball. 2001. Victorian marine habitat database: seagrass mapping of Port Phillip Bay, ed. M.a.F.R.I. Geospatial Systems Section. Queenscliff: Marine and Freshwater Resources Institute.

  • Boedeltje, G., J.P. Bakker, A. Ten Brinke, J.M. Van Groenendael, and M. Soesbergen. 2004. Dispersal phenology of hydrochorous plants in relation to discharge, seed release time and buoyancy of seeds: the flood pulse concept supported. Journal of Ecology 92: 786–796.

    Article  Google Scholar 

  • Bornette, G., and S. Puijalon. 2011. Response of aquatic plants to abiotic factors: a review. Aquatic Sciences 73: 1–14.

    Article  CAS  Google Scholar 

  • Cambridge, M.L., S.A. Carstairs, and J. Kuo. 1983. An unusual method of vegetative propagation in Australian Zosteraceae. Aquatic Botany 15: 201–203.

    Article  Google Scholar 

  • Campbell, M.L. 2003. Recruitment and colonisation of vegetative fragments of Posidonia australis and Posidonia coriacea. Aquatic Botany 76: 175–184.

    Article  Google Scholar 

  • Clarke, K.R., and M. Ainsworth. 1993. A method of linking multivariate community structure to environmental variables. Marine Ecology Progress Series 92: 205–219.

    Article  Google Scholar 

  • Cline, J.D. 1969. Spectrophotometric determination of hydrogen sulfide in natural waters. Limnology and Oceanography 14: 454-&.

  • Coles, R., F. Short, and C. Short. 2001. Global seagrass research methods Elsevier

  • De Falco, G., S. Ferrari, G. Cancemi, and M. Baroli. 2000. Relationship between sediment distribution and Posidonia oceanica seagrass. Geo-Marine Letters 20: 50–57.

    Article  Google Scholar 

  • Di Carlo, G., F. Badalamenti, A.C. Jensen, E.W. Koch, and S. Riggio. 2005. Colonisation process of vegetative fragments of Posidonia oceanica (L.) Delile on rubble mounds. Marine Biology 147: 1261–1270.

    Article  Google Scholar 

  • Erftemeijer, P.L.A., J.K.L. van Beek, C.A. Ochieng, Z. Jager, and H.J. Los. 2008. Eelgrass seed dispersal via floating generative shoots in the Dutch Wadden Sea: a model approach. Marine Ecology Progress Series 358: 115–124.

    Article  Google Scholar 

  • Evans, S.M., E.A. Sinclair, A.G. Poore, P.D. Steinberg, G.A. Kendrick, and A. Vergés. 2014. Genetic diversity in threatened Posidonia australis seagrass meadows. Conservation Genetics: 1–12

  • Ewanchuk, P.J., and S.L. Williams. 1996. Survival and re-establishment of vegetative fragments of eelgrass (Zostera marina). Canadian Journal of Botany 74: 1584–1590.

    Article  Google Scholar 

  • Fonseca, M.S., and S.S. Bell. 1998. Influence of physical setting on seagrass landscapes near Beaufort, North Carolina, USA. Marine Ecology Progress Series 171: 109–121.

    Article  Google Scholar 

  • Fonseca, M.S., W.J. Kenworthy, and F.X. Courtney. 1996. Development of planted seagrass beds in Tampa Bay, Florida, USA. 1. Plant components. Marine Ecology Progress Series 132: 127–139.

    Article  Google Scholar 

  • Gardner, S.N., and M. Mangel. 1999. Modeling investments in seeds, clonal offspring, and translocation in a clonal plant. Ecology 80: 1202–1220.

    Article  Google Scholar 

  • Grace, J.B. 1993. The adaptive significance of clonal reproduction in angiosperms: an aquatic perspective. Aquatic Botany 44: 159–180.

    Article  Google Scholar 

  • Green, E.E.P., and F.T. Short. 2003. World atlas of seagrasses: University of California Pr

  • Hall, L.M., M.D. Hanisak, and R.W. Virnstein. 2006. Fragments of the seagrasses Halodule wrightii and Halophila johnsonii as potential recruits in Indian River Lagoon, Florida. Marine Ecology Progress Series 310: 109–117.

    Article  Google Scholar 

  • Harwell, M.C., and R.J. Orth. 2002. Long-distance dispersal potential in a marine macrophyte. Ecology 83: 3319–3330.

    Article  Google Scholar 

  • Holmer, M., and S.L. Nielsen. 1997. Sediment sulfur dynamics related to biomass-density patterns in Zostera marina (eelgrass) beds. Marine Ecology Progress Series 146: 163–171.

    Article  CAS  Google Scholar 

  • Jenkins, G.P., H.M.A. May, M.J. Wheatley, and M.G. Holloway. 1997. Comparison of fish assemblages associated with seagrass and adjacent unvegetated habitats of Port Phillip Bay and Corner Inlet, Victoria, Australia, with emphasis on commercial species. Estuarine, Coastal and Shelf Science 44: 569–588.

    Article  Google Scholar 

  • Jenkins, G.P., K.P. Black, and M.J. Keough. 1999. The role of passive transport and the influence of vertical migration on the pre-settlement distribution of a temperate, demersal fish: numerical model predictions compared with field sampling. Marine Ecology Progress Series 184: 259–271.

    Article  Google Scholar 

  • Jenkins, G.P., K.P. Black, and P.A. Hamer. 2000. Determination of spawning areas and larval advection pathways for King George whiting in southeastern Australia using otolith microstructure and hydrodynamic modelling. I. Victoria. Marine Ecology Progress Series 199: 231–242.

    Article  Google Scholar 

  • Kaellstroem, B., A. Nyqvist, P. Aberg, M. Bodin, and C. Andre. 2008. Seed rafting as a dispersal strategy for eelgrass (Zostera marina). Aquatic Botany 88: 148–153.

    Article  Google Scholar 

  • Kendrick, G.A., M. Waycott, T.J. Carruthers, M.L. Cambridge, R. Hovey, S.L. Krauss, P.S. Lavery, D.H. Les, R.J. Lowe, and O.M. i Vidal. 2012. The central role of dispersal in the maintenance and persistence of seagrass populations. BioScience 62: 56–65.

    Article  Google Scholar 

  • Kenworthy, W.J., and A.C. Schwarzschild. 1998. Vertical growth and short-shoot demography of Syringodium filiforme in outer Florida Bay, USA. Marine Ecology Progress Series 173: 25–37.

    Article  Google Scholar 

  • Kirkman, H. 1996. Baseline and monitoring methods for seagrass meadows. Journal of Environmental Management 47: 191–201.

    Article  Google Scholar 

  • Kuo, J., I.H. Cook, and H. Kirkman. 1987. Observations of propagating shoots in the seagrass genus Amphibolis C. Agardh (Cymodoceaceae). Aquatic Botany 27: 291–293.

    Article  Google Scholar 

  • Levin, S.A., H.C. Muller-Landau, R. Nathan, and J. Chave. 2003. The ecology and evolution of seed dispersal: a theoretical perspective. Annual Review of Ecology, Evolution, and Systematics: 575–604

  • Macreadie, P.I., M.J. Bishop, and D.J. Booth. 2011. Implications of climate change for macrophytic rafts and their hitchhikers. Marine Ecology Progress Series 443: 285–292.

    Article  Google Scholar 

  • Macreadie, P.I., P.H. York, and C.D. Sherman. 2014. Resilience of Zostera muelleri seagrass to small‐scale disturbances: the relative importance of asexual versus sexual recovery. Ecology and Evolution. 4: 450–461.

  • Marbà, N., R. Santiago, E. Díaz-Almela, E. Álvarez, and C.M. Duarte. 2006. Seagrass (Posidonia oceanica) vertical growth as an early indicator of fish farm-derived stress. Estuarine, Coastal and Shelf Science 67: 475–483.

    Article  Google Scholar 

  • Marsh, J.A., W.C. Dennison, and R.S. Alberte. 1986. Effects of temperature on photosynthesis and respiration in eelgrass (Zostera marina). Journal of Experimental Marine Biology and Ecology 101: 257–267.

    Article  Google Scholar 

  • Moore, K.A., R.J. Orth, and J.F. Nowak. 1993. Environmental regulation of seed germination in Zostera marina L. (eelgrass) in Chesapeake Bay: effects of light, oxygen and sediment burial. Aquatic Botany 45: 79–91.

    Article  Google Scholar 

  • Nathan, R., and H.C. Muller-Landau. 2000. Spatial patterns of seed dispersal, their determinants and consequences for recruitment. Trends in Ecology & Evolution 15: 278–285.

    Article  Google Scholar 

  • Newell, R.I.E., and E.W. Koch. 2004. Modeling seagrass density and distribution in response to changes in turbidity stemming from bivalve filtration and seagrass sediment stabilization. Estuaries 27: 793–806.

    Article  Google Scholar 

  • Olesen, B., and K. Sand-Jensen. 1994. Biomass-density patterns in the temperate seagrass Zostera marina. Marine Ecology-Progress Series 109: 283–283.

    Article  Google Scholar 

  • Orth, R.J., M.C. Harwell, and G.J. Inglis. 2006a. Ecology of seagrass seeds and seagrass dispersal processes. In Seagrasses: biology, ecology and conservation, 111–133: Springer.

  • Orth, R.J., M.L. Luckenbach, S.R. Marion, K.A. Moore, and D.J. Wilcox. 2006b. Seagrass recovery in the Delmarva Coastal Bays, USA. Aquatic Botany 84: 26–36.

    Article  Google Scholar 

  • Patel, A.B.., K. Fukami, and T. Nishijima. 2001. Extracellular proteolytic activity in the surface sediment of a eutrophic inlet. Japanese Society of Microbial Ecology 16: 25–35.

    Google Scholar 

  • Philbrick, C.T., and D.H. Les. 1996. Evolution of aquatic angiosperm reproductive systems. BioScience 46: 813–826.

    Article  Google Scholar 

  • Proisy, C., N. Gratiot, E.J. Anthony, A. Gardel, F. Fromard, and P. Heuret. 2009. Mud bank colonization by opportunistic mangroves: a case study from French Guiana using lidar data. Continental Shelf Research 29: 632–641.

    Article  Google Scholar 

  • Ralph, P., and R. Gademann. 1999. Photosynthesis of the seagrass Posidonia australis Hook. f. and associated epiphytes, measured by in situ fluorescence analysis. In The seagrass flora and fauna of Rottnest Island, Western Australia., ed. D.I. Walker and F.E. Wells. Western Australian Museum, Perth.

  • Ralph, P., M. Durako, S. Enriquez, C. Collier, and M. Doblin. 2007. Impact of light limitation on seagrasses. Journal of Experimental Marine Biology and Ecology 350: 176–193.

    Article  Google Scholar 

  • Rasheed, M.A. 1999. Recovery of experimentally created gaps within a tropical Zostera capricorni (Aschers.) seagrass meadow, Queensland Australia. Journal of Experimental Marine Biology and Ecology 235: 183–200.

    Article  Google Scholar 

  • Rasheed, M.A. 2004. Recovery and succession in a multi-species tropical seagrass meadow following experimental disturbance: the role of sexual and asexual reproduction. Journal of Experimental Marine Biology and Ecology 310: 13–45.

    Article  Google Scholar 

  • Romme, W.H., E.H. Everham, L.E. Frelich, M.A. Moritz, and R.E. Sparks. 1998. Are large, infrequent disturbances qualitatively different from small, frequent disturbances? Ecosystems 1: 524–534.

    Article  Google Scholar 

  • Silva, J., and R. Santos. 2003. Daily variation patterns in seagrass photosynthesis along a vertical gradient. Marine Ecology Progress Series 257: 37–44.

    Article  Google Scholar 

  • Silvertown, J. 2008. The evolutionary maintenance of sexual reproduction: evidence from the ecological distribution of asexual reproduction in clonal plants. International Journal of Plant Sciences 169: 157–168.

    Article  Google Scholar 

  • Smith, T.M., G.R. Jenkins, and N. Hutchinson. 2012. Seagrass edge effects on fish assemblages in deep and shallow habitats. Estuarine, Coastal and Shelf Science 115: 291–299.

    Article  Google Scholar 

  • Sousa, W.P., P.G. Kennedy, B.J. Mitchell, and B.M. Ordonez. 2007. Supply-side ecology in mangroves: do propagule dispersal and seedling establishment explain forest structure? Ecological Monographs 77: 53–76.

    Article  Google Scholar 

  • Thiel, M. 2003. Rafting of benthic macrofauna: important factors determining the temporal succession of the assemblage on detached macroalgae. Hydrobiologia 503: 49–57.

    Article  Google Scholar 

  • Thiel, M., and L. Gutow. 2005. The ecology of rafting in the marine environment. II. The rafting organisms and community. Oceanography and Marine Biology: An Annual Review 43: 279–418.

    Article  Google Scholar 

  • Underwood, A.J., and P.G. Fairweather. 1989. Supply-side ecology and benthic marine assemblages. Trends in Ecology & Evolution 4: 16–20.

    Article  CAS  Google Scholar 

  • Valentine, J.F., K.L. Heck, and A.M. Cinkovich. 2002. Impacts of seagrass food webs on marine ecosystems: a need for a broader perspective. Bulletin of Marine Science 71: 1361–1368.

    Google Scholar 

  • Waycott, M., C.M. Duarte, T.J. Carruthers, R.J. Orth, W.C. Dennison, S. Olyarnik, A. Calladine, J.W. Fourqurean, K.L. Heck Jr., A.R. Hughes, G.A. Kendrick, W.J. Kenworthy, F.T. Short, and S.L. Williams. 2009. Accelerating loss of seagrasses across the globe threatens coastal ecosystems. Proceedings of the National Academy of Sciences of the United States of America 106: 12377–12381.

    Article  CAS  Google Scholar 

  • Wicks, E.C., E.W. Koch, J.M. O’Neil, and K. Elliston. 2009. Effects of sediment organic content and hydrodynamic conditions on the growth and distribution of Zostera marina. Marine Ecology Progress Series 378: 71–80.

    Article  CAS  Google Scholar 

  • Williams, G.C. 1975. Sex and evolution. Monographs in population biology: 3–200

  • York, P.H., R.K. Gruber, R. Hill, P.J. Ralph, D.J. Booth, and P.I. Macreadie. 2013. Physiological and morphological responses of the temperate seagrass Zostera muelleri to multiple stressors: investigating the interactive effects of light and temperature. PloS One 8: e76377.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We thank the Victorian Marine Science Consortium, Queenscliff, for use of their facilities. For assistance, we thank Rod Watson and Liz McGrath at VMSC Queenscliff, Melanie Purdy and Stacey Trevathan-Tackett at UTS and everyone involved at the Deakin University Centre for Integrative Ecology. We are grateful to both the University of Technology Sydney and Deakin University for technical support. This study was financially supported by a research grant from the Victorian Department of Sustainability and Environment: ‘Seagrass resilience in Port Phillip Bay: aiming to develop better predictions of how seagrass responds to environmental change’.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alexandra C. G. Thomson.

Additional information

Communicated by John C. Callaway

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Thomson, A.C.G., York, P.H., Smith, T.M. et al. Seagrass Viviparous Propagules as a Potential Long-Distance Dispersal Mechanism. Estuaries and Coasts 38, 927–940 (2015). https://doi.org/10.1007/s12237-014-9850-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12237-014-9850-1

Keywords

Navigation