Skip to main content
Log in

Uniform Micellization: The Key to Enhanced Mechanical Strength and Swelling Efficiency of Chitosan Hydrogel

  • Published:
Fibers and Polymers Aims and scope Submit manuscript

Abstract

The fabrication of hydrophilic porous hydrogel, with high mechanical strength and good uptake capacity is desirable for a broad range of applications such as drug delivery and liquid sensors. The usual methods are limited to the production of structures with high density of covalently crosslinked networks that restricts the polymer chain rearrangement, resulting in non-uniformed pore size distribution. Covalent networks also limit the activity of functional groups and influence the uptake properties of the polymer. In this study, we proposed simple cyclic cryogelation for the fabrication of hydrogels with uniform pore sizes via controlling the micellization and crystal formation. The chitosan based hydrogels ionically crosslinked with 8 % (w/v) of tripoli phosphate sodium (TPP) displayed high Young’s modulus (63 MPa) after cyclic freezethawing. The liquid uptake capacity of the samples treated with 8 % (w/v) TPP solution at pH 4 showed a slight decrease of about 29 % in comparison to that of non-cyclic processed samples (36 %).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. S.-H. Hsu, C.-W. Chen, K.-C. Hung, Y.-C. Tsai, and S. Li, Polymers, 8, 252 (2016).

    Article  CAS  PubMed Central  Google Scholar 

  2. J. R. Moon and J. H. Kim, Polym. Int., 59, 630 (2010).

    CAS  Google Scholar 

  3. H. P. James, R. John, A. Alex, and K. Anoop, Acta Pharm. Sin. B., 4, 120 (2014).

    Article  Google Scholar 

  4. I. M. El-Sherbiny and M. H. Yacoub, Glob. Cardiol. Sci. Pract., 2013, 316 (2013).

    PubMed  PubMed Central  Google Scholar 

  5. O. Philippova and E. Korchagina, Polym. Sci., Ser. A, 54, 552 (2012).

    Article  CAS  Google Scholar 

  6. M. Beppu, R. Vieira, C. Aimoli, and C. Santana, J. Memb. Sci., 301, 126 (2007).

    Article  CAS  Google Scholar 

  7. H. Kiuchi, W. Kai, and Y. Inoue, J. Appl. Polym. Sci., 107, 3823 (2008).

    Article  CAS  Google Scholar 

  8. M. J. Khan, J. Zhang, and Q. Guo, Chem. Eng. J., 301, 92 (2016).

    Article  CAS  Google Scholar 

  9. X. Shen, J. L. Shamshina, P. Berton, G. Gurau, and R. D. Rogers, Green Chem., 18, 53 (2016).

    Article  Google Scholar 

  10. S. Khan and N. M. Ranjha, Polym. Bull., 71, 2133 (2014).

    Article  CAS  Google Scholar 

  11. B. Smitha, S. Sridhar, and A. Khan, Eur. Polym. J., 41, 1859 (2005).

    Article  CAS  Google Scholar 

  12. L. D. Harris, B.-S. Kim, and D. J. Mooney, J. Biomed. Mater. Res., 42, 396 (1998).

    Article  CAS  PubMed  Google Scholar 

  13. I. N. Savina, G. C. Ingavle, A. B. Cundy, and S. V. Mikhalovsky, Sci. Rep., 6, 21154 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. W. W. Ngah and S. Fatinathan, J. Environ. Manage., 91, 958 (2010).

    Article  CAS  PubMed  Google Scholar 

  15. M. Sureshkumar, D. Das, M. Mallia, and P. Gupta, J. Hazard. Mater., 184, 65 (2010).

    Article  CAS  PubMed  Google Scholar 

  16. N. Csaba, M. Köping-Höggård, and M. J. Alonso, Int._J. Pharm., 382, 205 (2009).

    Article  CAS  PubMed  Google Scholar 

  17. I. N. Savina, V. M. Gun'ko, V. V. Turov, M. Dainiak, G. J. Phillips, I. Y. Galaev, and S. V. Mikhalovsky, Soft Matter, 7, 4276 (2011).

    Article  CAS  Google Scholar 

  18. M. C. Gutiérrez, M. L. Ferrer, and F. del Monte, Chem. Mater., 20, 634 (2008).

    Article  CAS  Google Scholar 

  19. B. P. Panda, S. Mohanty, and S. Nayak, Chin. J. Chem. Eng. 2013, Article ID 245718 (2013).

    Google Scholar 

  20. D. R. Bhumkar and V. B. Pokharkar, J. Am. Pharm. Assoc., 7, E138 (2006).

    Google Scholar 

  21. P. Severino, C. F. da Silva, M. A. da Silva, M. H. Santana, and E. B. Souto, Sugar Tech., 18, 49 (2016).

    CAS  Google Scholar 

  22. V. S. Joshi and M. J. Joshi, Cryst. Res. Technol., 38, 817 (2003).

    Article  CAS  Google Scholar 

  23. M. G. Pineda, S. Torres, L. V. López, F. J. Enríquez-Medrano, R. D. de León, S. Fernández, H. Saade, and R. G. López, Molecules, 19, 9273 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. B. Nasri-Nasrabadi, T. Behzad, and R. Bagheri, Fiber. Polym., 15, 347 (2014).

    Article  CAS  Google Scholar 

  25. T. Dursch, D. Liu, Y. Oh, and C. Radke, Acta Biomater., 15, 48 (2015).

    Article  CAS  PubMed  Google Scholar 

  26. S. L. Jahren, M. F. Butler, S. Adams, and R. E. Cameron, Macromol. Chem. Phys., 211, 644 (2010).

    Article  CAS  Google Scholar 

  27. P. J. Flory, N. Rabjohn, and M. C. Shaffer, J. Polym. Sci., 4, 225 (1949).

    Article  CAS  Google Scholar 

  28. M. Guvendiren, S. Yang, and J. A. Burdick, Adv. Funct. Mater., 19, 3038 (2009).

    Article  CAS  Google Scholar 

  29. J.-H. Chang, C.-L. Chen, A. V. Ellis, and C.-H. Tung, Int. J. Sci. Eng., 10, 293 (2012).

    Google Scholar 

  30. R. Hejazi and M. Amiji, J. Control. Release, 89, 151 (2003).

    Article  CAS  PubMed  Google Scholar 

  31. P. Jiang, K. Hwang, D. Mittleman, J. Bertone, and V. Colvin, J. Am. Chem. Soc., 121, 11630 (1999).

    Article  CAS  Google Scholar 

  32. N. Adrus and M. Ulbricht, J. Mater. Chem., 22, 3088 (2012).

    Article  CAS  Google Scholar 

  33. N. Syuhada, N. Huang, S. Vijay Kumar, H. Lim, S. Rahman, G. Thien, N. Ibrahim, M. Ahmad, and P. Moradihamedani, Sains Malays., 43, 851 (2014).

    CAS  Google Scholar 

  34. A. A. Alhwaige, T. Agag, H. Ishida, and S. Qutubuddin, Biomacromolecules, 14, 1806 (2013).

    Article  CAS  PubMed  Google Scholar 

  35. B. Nasri-Nasrabadi, A. Kaynak, Z. K. Nia, and A. Kouzani, Cellulose, 25, 549 (2018).

    Article  CAS  Google Scholar 

  36. L. Zhang, J. Zhao, J. Zhu, C. He, and H. Wang, Soft Matter, 8, 10439 (2012).

    Article  CAS  Google Scholar 

  37. S. Balakrishnan, P. Start, D. Raghavan, and S. D. Hudson, Polymer, 46, 11255 (2005).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Abbas Z. Kouzani.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nasri-Nasrabadi, B., Kaynak, A., Wong, C. et al. Uniform Micellization: The Key to Enhanced Mechanical Strength and Swelling Efficiency of Chitosan Hydrogel. Fibers Polym 20, 11–18 (2019). https://doi.org/10.1007/s12221-019-8577-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12221-019-8577-9

Keywords

Navigation