Skip to main content
Log in

Mechanical property optimization of wet-spun lignin/polyacrylonitrile carbon fiber precursor by response surface methodology

Fibers and Polymers Aims and scope Submit manuscript

Abstract

Lignin, nature’s abundant polymer with a remarkably high carbon content, is an ideal bio-renewable precursor for carbon fiber production. However, the poor mechanical property of lignin-derived fibers has hindered their industrial application as carbon fiber precursor. In this work, process engineering through the application of computational modeling was performed to optimize wet-spinning conditions for the production of lignin precursor fibers with enhanced mechanical properties. Continuous lignin-derived precursor fibers with the maximum possible lignin content were successfully produced in a blend with polyacrylonitrile, as a wet-spinning process facilitator. Response surface methodology was employed to systematically investigate the simultaneous influence of material and process variables on mechanical properties of the precursor fibers. This allowed generating a mathematical model that best predicted the tensile strength of the precursor fibers as a function of the processing variables. The optimal wet-spinning conditions were obtained by maximizing the tensile strength within the domain of the developed mathematical model.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

References

  1. R. Cox in “Synthetic Fibres: Nylon, Polyester, Acrylic, Polyolefin” (J. E. McIntyre Ed.), 1st ed., pp.167–234, Woodhead Publishing Ltd., UK, 2004.

  2. J. F. Kadla, S. Kubo, R. A. Venditti, R. D. Gilbert, A. L. Compere, and W. Griffith, Carbon, 40, 2913 (2002).

    Article  CAS  Google Scholar 

  3. K. Sudo and K. Shimizu, J. Appl. Polym. Sci., 44, 127 (1992).

    Article  CAS  Google Scholar 

  4. Y. Uraki, S. Kubo, N. Nigo, Y. Sano, and T. Sasaya, Holzforschung, 49, 343 (1995).

    Article  CAS  Google Scholar 

  5. E. Frank, F. Hermanutz, and M. R. Buchmeiser, Macromol. Mater. Eng., 297, 493 (2012).

    Article  CAS  Google Scholar 

  6. H. Khayyam, M. Naebe, A. Bab-Hadiashar, F. Jamshidi, Q. Li, S. Atkiss, D. Buckmaster, and B. Fox, Applied Energy, 158, 643 (2015).

    Article  CAS  Google Scholar 

  7. H. Khayyam, M. Naebe, O. Zabihi, R. Zamani, S. Atkiss, and B. Fox, IEEE Transactions on Industrial Informatics, 11, 887 (2015).

    Article  Google Scholar 

  8. K. Shirvanimoghaddam, S. U. Hamim, M. Karbalaei Akbari, S. M. Fakhrhoseini, H. Khayyam, A. H. Pakseresht, E. Ghasali, M. Zabet, K. S. Munir, S. Jia, J. P. Davim, and M. Naebe, Compos. Pt. A-Appl. Sci. Manuf., 92, 70 (2017).

    Article  CAS  Google Scholar 

  9. O. P. Bahl, Z. Shen, J. G. Lavin, and R. A. Ross in “Carbon Fibers, Third Edition, Revised and Expanded” (J. B. Donnet, T. K. Wang, S. Rebouillat, and J. C. M. Peng Eds.), pp.1–83, Marcel Dekker, New York, 1998.

  10. A. Ziabicki, “Fundamentals of Fibre Formation: The Science of Fibre Spinning and Drawing”, pp.250–345, Wiley, London: New York, 1976.

    Google Scholar 

  11. S. P. Maradur, C. H. Kim, S. Y. Kim, B. H. Kim, W. C. Kim, and K. S. Yang, Synth. Met., 162, 453 (2012).

    Article  CAS  Google Scholar 

  12. X. Dong, C. Lu, P. Zhou, S. Zhang, L. Wang, and D. Li, RSC Adv., 5, 42259 (2015).

    Article  CAS  Google Scholar 

  13. K. Xia, Q. Ouyang, Y. Chen, X. Wang, X. Qian, and L. Wang, ACS Sustainable Chem. Eng., 4, 159 (2016).

    Article  CAS  Google Scholar 

  14. A. Lehmann, H. Ebeling, and H. P. Fink, US Patent, 0194603 (2012).

  15. P. J. Bissett and C. W. Herriott, US Patent, 0003471 (2012).

  16. D. A. Baker and T. G. Rials, J. Appl. Polym. Sci., 130, 713 (2013).

    Article  CAS  Google Scholar 

  17. G. Husman, “Development and Commercialization of a Novel Low-cost Carbon Fiber”, Available at http://www1. eere.energy.gov/vehiclesandfuels/pdfs/merit_review_2012/lightweight_materials/lm048_husman_2012_o.pdf accessed 2014.

    Google Scholar 

  18. Y. Ma, S. Asaadi, L. Johansson, P. Ahvenainen, M. Reza, M. Alekhina, L. Rautkari, A. Michud, L. Hauru, M. Hummel, and H. Sixta, Sustainable Chem. Green Chem., 8, 4030 (2015).

    CAS  Google Scholar 

  19. H. C. Liu, A. Chien, B. A. Newcomb, Y. Liu, and S. Kumar, ACS Sustainable Chem. Eng., 3, 1943 (2015).

    Article  CAS  Google Scholar 

  20. M. Zhang and A. A. Ogale, Carbon, 69, 626 (2014).

    Article  CAS  Google Scholar 

  21. M. Zhang and A. A. Ogale, J. Appl. Polym. Sci., 133, 43663 (2016).

    Google Scholar 

  22. R. H. Myers, D. C. Montgomery, and C. M. Anderson-Cook, “Response Surface Methodology: Process and Product Optimization Using Designed Experiments”, 3rd ed., pp.1–62, Wiley, USA, 2009.

    Google Scholar 

  23. A. K. Gupta, D. K. Paliwal, and P. Bajaj, J. Macromol. Sci., Part C, 31, 1 (1991).

    Google Scholar 

  24. A. Oroumei, B. Fox, and M. Naebe, ACS Sustainable Chem. Eng., 3, 758 (2015).

    Article  CAS  Google Scholar 

  25. J. B. Donnet and R. C. Bansal, “Carbon Fibers”, 3rd ed., pp.8–9, Marcel Dekker, Inc., New York, 1998.

    Google Scholar 

  26. D. C. Montgomery and G. C. Runger, “Applied Statistics and Probability for Engineers”, 3rd ed., pp.505–570, John Wiley & Sons, US, 2003.

    Google Scholar 

  27. M. A. Bezerra, R. E. Santelli, E. P. Oliveira, L. S. Villar, and L. A. Escaleira, Talanta, 76, 965 (2008).

    Article  CAS  Google Scholar 

  28. J. P. Bell and J. H. Dumbleton, Text. Res. J., 41, 196 (1971).

    Article  CAS  Google Scholar 

  29. J. S. Tsai and C. H. Lin, J. Appl. Polym. Sci., 42, 3045 (1991).

    Article  CAS  Google Scholar 

  30. C. Wang, S. S. Kelley, and R. A. Venditti, ChemSusChem, 9, 770 (2016).

    Article  CAS  Google Scholar 

  31. T. Saito, R. H. Brown, M. A. Hunt, D. L. Pickel, J. M. Pickel, J. M. Messman, F. S. Baker, M. Keller, and A. K. Naskar, Green Chem., 14, 3295 (2012).

    Article  CAS  Google Scholar 

  32. M. Elices and J. Llorca, “Fiber Fracture”, pp.27–54, Elsevier Science Ltd., Oxford, 2002.

    Book  Google Scholar 

  33. J. Smook, W. Hamersma, and A. J. Pennings, J. Mater. Sci., 19, 1359 (1984).

    Article  CAS  Google Scholar 

  34. S. H. Bahrami, P. Bajaj, and K. Sen, J. Appl. Polym. Sci., 89, 1825 (2003).

    Article  CAS  Google Scholar 

  35. B. S. Gupta and M. Afshari in “Handbook of Tensile Properties of Textile and Technical Fibres” (A. R. Bunsell Ed.), p.486, Woodhead Publishing Limited, North America, 2009.

  36. S. Rosenbaum, J. Appl. Polym. Sci., 9, 2071 (1965).

    Article  CAS  Google Scholar 

  37. D. Sawai, A. Yamane, T. Kameda, T. Kanamoto, M. Ito, H. Yamazaki, and K. Hisatani, Macromolecules, 32, 5622 (1999).

    Article  CAS  Google Scholar 

  38. R. A. Allen, I. M. Ward, and Z. Bashir, Polymer, 35, 4035 (1994).

    Article  CAS  Google Scholar 

  39. X. D. Liu and W. Ruland, Macromolecules, 26, 3030 (1993).

    Article  CAS  Google Scholar 

  40. G. Henrici-Olivé and S. Olivé, “Chemistry”, p.123, Springer Berlin Heidelberg, Berlin, Heidelberg, 1979.

    Book  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Minoo Naebe.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Oroumei, A., Naebe, M. Mechanical property optimization of wet-spun lignin/polyacrylonitrile carbon fiber precursor by response surface methodology. Fibers Polym 18, 2079–2093 (2017). https://doi.org/10.1007/s12221-017-7363-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12221-017-7363-9

Keywords

Navigation