Skip to main content
Log in

Study on nanocellulose by high pressure homogenization in homogeneous isolation

  • Published:
Fibers and Polymers Aims and scope Submit manuscript

Abstract

Nanocellulose from cotton cellulose was prepared by high pressure homogenization (HPH) in ionic liquids (1-butyl-3-methylimidazolium chloride ([Bmim]Cl). The nanocellulose possessed narrow particle size distribution, with diameter range of 10–20 nm. Weight average molecular weight (Mw) of nanocellulose treated by HPH was lower (173.8 kDa) than the one ILs treated cellulose (344.6 kDa). X-ray photoelectron spectroscopy (XPS), Fourier transform infrared spectroscopy (FT-IR), and Solid-state CP/MAS 13C NMR measurements were employed to study the mechanism of structural changes, which suggested that network structure between cellulose chains were destructed by the shearing forces of HPH in combination with ionic liquids. The intermolecular and intra-molecular hydrogen bonds of cellulose were further destroyed, leading to the long cellulose molecular chains being collapsed into short chains. Therefore, the nanocellulose could provide desired properties, such as lower thermal stability and strong water holding capacity. Results indicated that it had great potential in the applications for packaging, medicines, cosmetics and tissue engineering.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. F. Matthews, M. Bergenstrahle, G. T. Beckham, M. E. Himmel, M. R. Nimlos, J. W. Brady, and M. F. Crowley, J. Phys. Chem B., 115, 2155 (2011).

    Article  CAS  Google Scholar 

  2. N. Núñez, J. E. Martín-Alfonso, M. E. Eugenio, C. Valencia, M. J. Díaz, and J. M. Franco, Ind. Eng. Chem. Res., 51, 9777 (2012).

    Article  Google Scholar 

  3. E. Feese, H. Sadeghifar, H. S. Gracz, D. S. Argyropoulos, and R. A. Ghiladi, Biomacromolecules, 12, 3528 (2011).

    Article  CAS  Google Scholar 

  4. N. Sharmin, R. A. Khan, S. Salmieri, D. Dussault, J. Bouchard, and M. Lacroix, J. Agric. Food Chem., 60, 623 (2012).

    Article  CAS  Google Scholar 

  5. S. Vuoti, R. Talja, L.-S. Johansson, H. Heikkinen, and T. Tammelin, Cellulose, 20, 2359 (2013).

    Article  CAS  Google Scholar 

  6. S. Chenampulli, G. Unnikrishnan, A. Sujith, S. Thomas, and T. Francis, Cellulose, 20, 429 (2013).

    Article  CAS  Google Scholar 

  7. I. Siró and D. Plackett, Cellulose, 17, 459 (2010).

    Article  Google Scholar 

  8. A. M. Olszewska, E. Kontturi, J. Laine, and M. Österberg, Cellulose, 20, 1777 (2013).

    Article  CAS  Google Scholar 

  9. M. Schwanninger, J. C. Rodrigues, H. Pereira, and B. Hinterstoisser, Vib. Spectrosc., 36, 23 (2004).

    Article  CAS  Google Scholar 

  10. F. Donsi, B. Senatore, Q. Huang, and G. Ferrari, J. Agric. Food Chem., 58, 10653 (2010).

    Article  CAS  Google Scholar 

  11. J. Pereda, V. Perragut, J. M. Quevedo, B. Guamis, and A. J. Trujillo, J. Agric. Food Chem., 56, 7125 (2008).

    Article  CAS  Google Scholar 

  12. M. P. Fernández-Ronco, J. Kluge, and M. Mazzotti, Cryst. Growth Des., 13, 2013 (2013).

    Article  Google Scholar 

  13. A. Karadag, B. Ozcelik, and Q. Huang, J. Agric. Food Chem., 62, 1852 (2014).

    Article  CAS  Google Scholar 

  14. T. T. Ho, T. Zimmermann, S. Ohr, and W. R. Caseri, ACS Appl. Mater. Interfaces, 4, 4832 (2012).

    Article  CAS  Google Scholar 

  15. L. Nilsson, M. Leeman, K.-G. Wahlund, and B. R. Bergenståhi, Biomacromolecules, 7, 2671 (2006).

    Article  CAS  Google Scholar 

  16. N. Lavoine, I. Desloges, A. Dufresne, and J. Bras, Carbohydr. Polym., 90, 735 (2012).

    Article  CAS  Google Scholar 

  17. J. Li, X. Wei, Q. Wang, J. Chen, G. Chang, L. Kong, and Y. Liu, Carbohydr. Polym., 90, 1609 (2012).

    Article  CAS  Google Scholar 

  18. Y. Wang, X. Wei, J. Li, Q. Wang, F. Wang, and L. Kong, J. Mater. Sci. Chem. Eng., 1, 49 (2013).

    Google Scholar 

  19. J. Ding, S.-C. Chen, X.-L. Wang, and Y.-Z. Wang, Ind. Eng. Chem. Res., 50, 9123 (2011).

    Article  CAS  Google Scholar 

  20. F. Donsi, Y. Wang, J. Li, and Q. Huang, J. Agric. Food Chem., 58, 2848 (2010).

    Article  CAS  Google Scholar 

  21. J. Floury, A. Desrumaux, M. A. V. Axelos, and J. Legrand, Food Hydrocolloids, 16, 47 (2002).

    Article  CAS  Google Scholar 

  22. A. S. Amarasekara and O. S. Owereh, Ind. Eng. Chem. Res., 48, 10152 (2009).

    Article  CAS  Google Scholar 

  23. T. Topalovic, V. A. Nierstrasz, L. Bautista, D. Jocic, A. Navarro, and M. M. C. G. Warmoeskerken, Colloid Surf. A-Physicochem. Eng. Asp., 296, 76 (2007).

    Article  CAS  Google Scholar 

  24. V. Buchholz, P. Adler, M. Bäcker, W. Hölle, A. Simon, and G. Wegner, Langmuir., 13, 3206 (1997).

    Article  CAS  Google Scholar 

  25. R. P. Swatloski, S. K. Spear, J. D. Holbrey, and R. D. Rogers, J. Am. Chem. Soc., 124, 4974 (2002).

    Article  CAS  Google Scholar 

  26. A. S. Gross, A. T. Bell, and J. W. Chu, J. Phys. Chem., B. 115, 13433 (2011).

    Article  CAS  Google Scholar 

  27. Y. Maréchal and H. Chanzy, J. Mol. Struct., 523, 183 (2000).

    Article  Google Scholar 

  28. A. Watanabe, S. Morita, and Y. Ozaki, Biomacromolecules, 8, 2969 (2007).

    Article  CAS  Google Scholar 

  29. H. Zhang, J. Wu, J. Zhang, and J. He, Macromolecules, 38, 8272 (2005).

    Article  CAS  Google Scholar 

  30. B. Hinterstoisser, M. Åkerholm, and L. Salmén, Biomacromolecules, 4, 1232 (2003).

    Article  CAS  Google Scholar 

  31. Y.-H. P. Zhang and L. R. Lynd, Biomacromolecules, 6, 1510 (2005).

    Article  CAS  Google Scholar 

  32. R. H. Atalla and D. L. VanderHartr, Solid State Nucl. Magn. Reson., 15, 1 (1999).

    Article  CAS  Google Scholar 

  33. Z. LiNa, D. Ruan, and G. ShanJun, Polym. Sci., 40, 1521 (2002).

    Article  Google Scholar 

  34. L. Delmotte, C. Ganne-Chedeville, J. M. Leban, A. Pizzi, and F. Pichelin, Polym. Degrad. Stabil., 93, 406 (2008).

    Article  CAS  Google Scholar 

  35. S. Marchesan and M. Prato, ACS Med. Chem. Lett., 4, 147 (2013).

    Article  CAS  Google Scholar 

  36. F. K. V. Moreira, L. A. D. Camargo, J. M. Marconcini, and L. H. C. Mattoso, J. Agric. Food Chem., 61, 7110 (2013).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qinghuang Wang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, Y., Wei, X., Li, J. et al. Study on nanocellulose by high pressure homogenization in homogeneous isolation. Fibers Polym 16, 572–578 (2015). https://doi.org/10.1007/s12221-015-0572-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12221-015-0572-1

Keywords

Navigation