Skip to main content
Log in

Scaling up the production rate of nanofibers by needleless electrospinning from multiple ring

  • Published:
Fibers and Polymers Aims and scope Submit manuscript

Abstract

Mass production of nanofibers is crucial in both laboratory research and industry application of nanofibers. In this study, multiple ring spinnerets have been used to generate needleless electrospinning. Multiple polymer jets were produced from the top of each ring in the spinning process, resulting in thin and uniform nanofibers. Production rate of nanofibers increased gradually with the increase of the number of rings in the spinneret. Spinning performance of multiple ring electrospinning, namely the quality and production rate of the as-spun nanofibers, was dependent on experimental parameters like applied voltage and polymer concentration. Electric field analysis of multiple ring showed that high concentrated electric field was formed on the surface of each ring. Fiber diameter together with production rate of needleless electrospinning was dependent on the strength and distribution of the electric field of the spinneret. Needleless electrospinning from multiple ring can be further applied in both laboratory research and industry where large amount of nanofibers must be employed simultaneously.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Refrerences

  1. A. Greiner and J. H. Wendorff, Angew. Chem. Int. Edit., 46, 5670 (2007).

    Article  CAS  Google Scholar 

  2. D. Li and Y. Xia, Adv. Mater., 16, 1151 (2004).

    Article  CAS  Google Scholar 

  3. D. H. Reneker and I. Chun, Nanotechnology, 7, 216 (1996).

    Article  CAS  Google Scholar 

  4. B. Ding, E. Kimura, T. Sato, S. Fujita, and S. Shiratori, Polymer, 45, 1895 (2004).

    Article  CAS  Google Scholar 

  5. G. Kim, Y. S. Cho, and W. D. Kim, Eur. Polym. J., 42, 2031 (2006).

    Article  CAS  Google Scholar 

  6. W. E. Teo and S. Ramakrishna, Nanotechnology, 17, R89 (2006).

    Article  CAS  Google Scholar 

  7. A. L. Yarin and E. Zussman, Polymer, 45, 2977 (2004).

    Article  CAS  Google Scholar 

  8. O. Jirsak, F. Sanetrnik, D. Lukas, V. Kotek, L. Martinova, and J. Chaloupek, Patent, WO 2005/024101 A1 (2005).

    Google Scholar 

  9. D. Petras, M. Maly, J. Pozner, J. Trdlicka, and M. Kovac, Patent, WO 2008/028428 A1 (2008).

    Google Scholar 

  10. H. Niu, T. Lin, and X. Wang, J. Appl. Polym. Sci., 114, 3524 (2009).

    Article  CAS  Google Scholar 

  11. X. Wang, H. Niu, T. Lin, and X. Wang, Polym. Eng. Sci., 49, 1582 (2009).

    Article  CAS  Google Scholar 

  12. X. Wang, H. Niu, X. Wang, and T. Lin, J. Nanomater., 2012, 785920 (2012).

    Google Scholar 

  13. B. Lu, Y. Wang, Y. Liu, H. Duan, J. Zhou, Z. Zhang, W. Youqing, X. Li, W. Wang, W. Lan, and E. Xie, Small, 6, 1612 (2010).

    Article  CAS  Google Scholar 

  14. O. O. Dosunmu, G. G. Chase, W. Kataphinan, and D. H. Reneker, Nanotechnology, 17, 1123 (2006).

    Article  CAS  Google Scholar 

  15. J. S. Varabhas, G. G. Chase, and D. H. Reneker, Polymer, 49, 4226 (2008).

    Article  CAS  Google Scholar 

  16. D. Lukas, A. Sarkar, and P. Pokorny, J. Appl. Phys., 103, 084309 (2008).

    Article  Google Scholar 

  17. D. G. Yu, J. H. Yu, L. Chen, G. R. Williams, and X. Wang, Carbohyd. Polym., 90, 1016 (2012).

    Article  CAS  Google Scholar 

  18. D. G. Yu, C. Branford-White, S. W. Bligh, K. White, N. P. Chatterton, and L. M. Zhu, Macromol. Rapid. Commun., 32, 744 (2011).

    Article  CAS  Google Scholar 

  19. X. Wang, X. Wang, and T. Lin, J. Mater. Res., 27, 3013 (2012).

    Article  CAS  Google Scholar 

  20. X. Wang, X. Wang, and T. Lin, J. Ind. Text., DOI: 10.1177/1528083713498916.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xin Wang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, X., Lin, T. & Wang, X. Scaling up the production rate of nanofibers by needleless electrospinning from multiple ring. Fibers Polym 15, 961–965 (2014). https://doi.org/10.1007/s12221-014-0961-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12221-014-0961-x

Keywords

Navigation